Search results
Results from the WOW.Com Content Network
In Euclid's original approach, the Pythagorean theorem follows from Euclid's axioms. In the Cartesian approach, the axioms are the axioms of algebra, and the equation expressing the Pythagorean theorem is then a definition of one of the terms in Euclid's axioms, which are now considered theorems. The equation
In Euclid's original version of the algorithm, the quotient and remainder are found by repeated subtraction; that is, r k−1 is subtracted from r k−2 repeatedly until the remainder r k is smaller than r k−1. After that r k and r k−1 are exchanged and the process is iterated. Euclidean division reduces all the steps between two exchanges ...
The Elements (Ancient Greek: Στοιχεῖα Stoikheîa) is a mathematical treatise consisting of 13 books attributed to the ancient Greek mathematician Euclid c. 300 BC. It is a collection of definitions, postulates, propositions (theorems and constructions), and mathematical proofs of the propositions.
The Data of Euclid, trans. from the text of Menge by George L. McDowell and Merle A. Sokolik, Baltimore: Union Square Press, 1993 (ISBN 0-9635924-1-6) The Medieval Latin Translation of the Data of Euclid, translated by Shuntaro Ito, Tokyo University Press, 1980 and Birkhauser, 1998.
Euclid (/ ˈ j uː k l ɪ d /; Ancient Greek: Εὐκλείδης; fl. 300 BC) was an ancient Greek mathematician active as a geometer and logician. [2] Considered the "father of geometry", [3] he is chiefly known for the Elements treatise, which established the foundations of geometry that largely dominated the field until the early 19th century.
Euclid's lemma — If a prime p divides the product ab of two integers a and b, then p must divide at least one of those integers a or b. For example, if p = 19 , a = 133 , b = 143 , then ab = 133 × 143 = 19019 , and since this is divisible by 19, the lemma implies that one or both of 133 or 143 must be as well.
There are several methods for defining quadratic equations for calculating each leg of a Pythagorean triple. [15] A simple method is to modify the standard Euclid equation by adding a variable x to each m and n pair. The m,n pair is treated as a constant while the value of x is varied to produce a "family" of triples based on the selected triple.
Expressed in these terms, the sum q of the finite series is the Mersenne prime 2 p − 1 and the last term t in the series is the power of two 2 p−1. Euclid proves that qt is perfect by observing that the geometric series with ratio 2 starting at q, with the same number of terms, is proportional to the original series; therefore, since the ...