enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Haber process - Wikipedia

    en.wikipedia.org/wiki/Haber_process

    The Haber process proved so essential to the German war effort [5] [14] that it is considered virtually certain Germany would have been defeated in a matter of months without it. Synthetic ammonia from the Haber process was used for the production of nitric acid, a precursor to the nitrates used in explosives.

  3. High-pressure chemistry - Wikipedia

    en.wikipedia.org/wiki/High-pressure_chemistry

    The process was first published in 1913 and was an important source of fuel for Germany during World War Two. The process was used in the US for a while after the war, but there are currently no commercial plants in the world. The Bergius process and the Haber-Bosch process were two pioneering methods of high-pressure chemistry.

  4. Ammonia production - Wikipedia

    en.wikipedia.org/wiki/Ammonia_production

    Because the syngas was essentially free of impurities, two axial-flow ammonia converters were used. In early 2000 Uhde developed a process that enabled plant capacities of 3300 mtpd and more. The key innovation was a single-flow synthesis loop at medium pressure in series with a conventional high-pressure synthesis loop. [26]

  5. Abiological nitrogen fixation using homogeneous catalysts

    en.wikipedia.org/wiki/Abiological_nitrogen...

    The dominant technology for abiological nitrogen fixation is the Haber process, which uses iron-based heterogeneous catalysts and H 2 to convert N 2 to NH 3. This article focuses on homogeneous (soluble) catalysts for the same or similar conversions. [1]

  6. Industrial processes - Wikipedia

    en.wikipedia.org/wiki/Industrial_processes

    Haber process – Atmospheric nitrogen (N 2) is separated, yielding ammonia (NH 3), which is used to make all synthetic fertilizer. The Haber process uses a fossil carbon source, generally natural gas , to provide the CO for the water–gas shift reaction , yielding hydrogen (H 2 ) and releasing CO 2 .

  7. Ammonia - Wikipedia

    en.wikipedia.org/wiki/Ammonia

    The Haber process, [146] also called the Haber–Bosch process, is the main industrial procedure for the production of ammonia. [ 147 ] [ 148 ] It converts atmospheric nitrogen (N 2 ) to ammonia (NH 3 ) by a reaction with hydrogen (H 2 ) using finely divided iron metal as a catalyst:

  8. Heterogeneous catalysis - Wikipedia

    en.wikipedia.org/wiki/Heterogeneous_catalysis

    The chemical and energy industries rely heavily on heterogeneous catalysis. For example, the Haber–Bosch process uses metal-based catalysts in the synthesis of ammonia, an important component in fertilizer; 144 million tons of ammonia were produced in 2016. [5]

  9. Carl Bosch - Wikipedia

    en.wikipedia.org/wiki/Carl_Bosch

    From 1909 until 1913 he transformed Fritz Haber's tabletop demonstration of a method to fix nitrogen using high-pressure chemistry through the Haber–Bosch process to produce synthetic nitrate, a process that has countless industrial applications for making a near-infinite variety of industrial compounds, consumer goods, and commercial ...