enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Complement (set theory) - Wikipedia

    en.wikipedia.org/wiki/Complement_(set_theory)

    If A is a set, then the absolute complement of A (or simply the complement of A) is the set of elements not in A (within a larger set that is implicitly defined). In other words, let U be a set that contains all the elements under study; if there is no need to mention U, either because it has been previously specified, or it is obvious and unique, then the absolute complement of A is the ...

  3. Naive set theory - Wikipedia

    en.wikipedia.org/wiki/Naive_set_theory

    A true universal set is not included in standard set theory (see Paradoxes below), but is included in some non-standard set theories. Given a universal set U and a subset A of U, the complement of A (in U) is defined as A C := {x ∈ U | x ∉ A}. In other words, A C ("A-complement"; sometimes simply A', "A-prime" ) is the set of all members of ...

  4. Universal set - Wikipedia

    en.wikipedia.org/wiki/Universal_set

    In set theory, a universal set is a set which contains all objects, including itself. [1] In set theory as usually formulated, it can be proven in multiple ways that a universal set does not exist. However, some non-standard variants of set theory include a universal set.

  5. Set (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Set_(mathematics)

    The complement may also be called the absolute complement to distinguish it from the relative complement below. Example: If the universal set is taken to be the set of integers, then the complement of the set of even integers is the set of odd integers.

  6. Set theory - Wikipedia

    en.wikipedia.org/wiki/Set_theory

    A set is described by listing elements separated by commas, or by a characterizing property of its elements, within braces { }. [8] Since sets are objects, the membership relation can relate sets as well, i.e., sets themselves can be members of other sets. A derived binary relation between two sets is the subset relation, also called set inclusion.

  7. List of set identities and relations - Wikipedia

    en.wikipedia.org/wiki/List_of_set_identities_and...

    This article lists mathematical properties and laws of sets, involving the set-theoretic operations of union, intersection, and complementation and the relations of set equality and set inclusion. It also provides systematic procedures for evaluating expressions, and performing calculations, involving these operations and relations.

  8. Algebra of sets - Wikipedia

    en.wikipedia.org/wiki/Algebra_of_sets

    The algebra of sets is the set-theoretic analogue of the algebra of numbers. Just as arithmetic addition and multiplication are associative and commutative, so are set union and intersection; just as the arithmetic relation "less than or equal" is reflexive, antisymmetric and transitive, so is the set relation of "subset".

  9. Glossary of set theory - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_set_theory

    Complement of a set C The Cantor set cac countable antichain condition (same as the countable chain condition) Cantor 1. Georg Cantor 2. The Cantor normal form of an ordinal is its base ω expansion. 3. Cantor's paradox says that the powerset of a set is larger than the set, which gives a contradiction when applied to the universal set. 4.