Search results
Results from the WOW.Com Content Network
The Brayton cycle, also known as the Joule cycle, is a thermodynamic cycle that describes the operation of certain heat engines that have air or some other gas as their working fluid. It is characterized by isentropic compression and expansion, and isobaric heat addition and rejection, though practical engines have adiabatic rather than ...
The Allam-Fetvedt Cycle is a recuperated, high-pressure, Brayton cycle employing a transcritical CO 2 working fluid with an oxy-fuel combustion regime. This cycle begins by burning a gaseous fuel with oxygen and a hot, high-pressure, recycled supercritical CO 2 working fluid in a combustor.
The most common refrigeration cycle is the vapor compression cycle, which models systems using refrigerants that change phase. The absorption refrigeration cycle is an alternative that absorbs the refrigerant in a liquid solution rather than evaporating it. Gas refrigeration cycles include the reversed Brayton cycle and the Hampson–Linde cycle.
Closed-cycle gas turbine schematic C compressor and T turbine assembly w high-temperature heat exchanger ʍ low-temperature heat exchanger ~ mechanical load, e.g. electric generator. A closed-cycle gas turbine is a turbine that uses a gas (e.g. air, nitrogen, helium, argon, [1] [2] etc.) for the working fluid as part of a closed thermodynamic ...
Differs from Otto cycle in that V 1 < V 4. Brayton: adiabatic: isobaric: adiabatic: isobaric Ramjets, turbojets, -props, and -shafts. Originally developed for use in reciprocating engines. The external combustion version of this cycle is known as the first Ericsson cycle from 1833. Diesel: adiabatic: isobaric: adiabatic: isochoric Diesel engine ...
Inverted Brayton Cycle (IBC) (also known as Subatmospheric Brayton cycle) is another version of the conventional Brayton cycle but with a turbine positioned immediately in the inlet of the system. [ 1 ] [ 2 ] [ 3 ]
For premium support please call: 800-290-4726 more ways to reach us
The (second) Ericsson cycle is also the limit of an ideal gas-turbine Brayton cycle, operating with multistage intercooled compression, and multistage expansion with reheat and regeneration. Compared to the Brayton cycle which uses adiabatic compression and expansion, the second Ericsson cycle uses isothermal compression and expansion, thus ...