enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Activation function - Wikipedia

    en.wikipedia.org/wiki/Activation_function

    When the activation function is non-linear, then a two-layer neural network can be proven to be a universal function approximator. [6] This is known as the Universal Approximation Theorem . The identity activation function does not satisfy this property.

  3. Pooling layer - Wikipedia

    en.wikipedia.org/wiki/Pooling_layer

    In neural networks, a pooling layer is a kind of network layer that downsamples and aggregates information that is dispersed among many vectors into fewer vectors. [1] It has several uses. It removes redundant information, reducing the amount of computation and memory required, makes the model more robust to small variations in the input, and ...

  4. Word2vec - Wikipedia

    en.wikipedia.org/wiki/Word2vec

    In 2010, Tomáš Mikolov (then at Brno University of Technology) with co-authors applied a simple recurrent neural network with a single hidden layer to language modelling. [6] Word2vec was created, patented, [7] and published in 2013 by a team of researchers led by Mikolov at Google over two papers.

  5. Gekko (optimization software) - Wikipedia

    en.wikipedia.org/wiki/Gekko_(optimization_software)

    In this example, deep learning generates a model from training data that is generated with the function ⁡ (). An artificial neural network with three layers is used for this example. The first layer is linear, the second layer has a hyperbolic tangent activation function, and the third layer is linear.

  6. Normalization (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Normalization_(machine...

    This solves the problem of different features having vastly different scales, for example if one feature is measured in kilometers and another in nanometers. Activation normalization, on the other hand, is specific to deep learning, and includes methods that rescale the activation of hidden neurons inside neural networks.

  7. Neural network (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Neural_network_(machine...

    In machine learning, a neural network (also artificial neural network or neural net, abbreviated ANN or NN) is a model inspired by the structure and function of biological neural networks in animal brains. [1] [2] An ANN consists of connected units or nodes called artificial neurons, which loosely model the neurons in the brain. Artificial ...

  8. Feedforward neural network - Wikipedia

    en.wikipedia.org/wiki/Feedforward_neural_network

    Simplified example of training a neural network for object detection: The network is trained on multiple images depicting either starfish or sea urchins, which are correlated with "nodes" that represent visual features. The starfish match with a ringed texture and a star outline, whereas most sea urchins match with a striped texture and oval shape.

  9. Bidirectional recurrent neural networks - Wikipedia

    en.wikipedia.org/wiki/Bidirectional_recurrent...

    Standard recurrent neural network (RNNs) also have restrictions as the future input information cannot be reached from the current state. On the contrary, BRNNs do not require their input data to be fixed. Moreover, their future input information is reachable from the current state. [2] BRNN are especially useful when the context of the input ...