Search results
Results from the WOW.Com Content Network
The spin transition is an example of transition between two electronic states in molecular chemistry. The ability of an electron to transit from a stable to another stable (or metastable ) electronic state in a reversible and detectable fashion, makes these molecular systems appealing in the field of molecular electronics .
The spin of a charged particle is associated with a magnetic dipole moment with a g-factor that differs from 1. (In the classical context, this would imply the internal charge and mass distributions differing for a rotating object. [4]) The conventional definition of the spin quantum number is s = n / 2 , where n can be any non-negative ...
The spin magnetic moment of the electron is =, where is the spin (or intrinsic angular-momentum) vector, is the Bohr magneton, and = is the electron-spin g-factor. Here μ {\displaystyle {\boldsymbol {\mu }}} is a negative constant multiplied by the spin , so the spin magnetic moment is antiparallel to the spin.
The superscript three (read as triplet) indicates that the multiplicity 2S+1 = 3, so that the total spin S = 1. This spin is due to two unpaired electrons, as a result of Hund's rule which favors the single filling of degenerate orbitals. The triplet consists of three states with spin components +1, 0 and –1 along the direction of the total ...
In physics and chemistry, a selection rule, or transition rule, formally constrains the possible transitions of a system from one quantum state to another. Selection rules have been derived for electromagnetic transitions in molecules , in atoms , in atomic nuclei , and so on.
One example of Rabi flopping is the spin flipping within a quantum system containing a spin-1/2 particle and an oscillating magnetic field. We split the magnetic field into a constant 'environment' field, and the oscillating part, so that our field looks like = + = + ( + ()) where and are the strengths of the environment and the oscillating fields respectively, and is the frequency at ...
In quantum physics, Fermi's golden rule is a formula that describes the transition rate (the probability of a transition per unit time) from one energy eigenstate of a quantum system to a group of energy eigenstates in a continuum, as a result of a weak perturbation.
The component of the spin along a specified axis is given by the spin magnetic quantum number, conventionally written m s. [ 1 ] [ 2 ] The value of m s is the component of spin angular momentum, in units of the reduced Planck constant ħ , parallel to a given direction (conventionally labelled the z –axis).