Search results
Results from the WOW.Com Content Network
Because modular exponentiation is an important operation in computer science, and there are efficient algorithms (see above) that are much faster than simply exponentiating and then taking the remainder, many programming languages and arbitrary-precision integer libraries have a dedicated function to perform modular exponentiation: Python's ...
The method is based on the observation that, for any integer >, one has: = {() /, /,. If the exponent n is zero then the answer is 1. If the exponent is negative then we can reuse the previous formula by rewriting the value using a positive exponent.
The modular inverse of aR mod N is REDC((aR mod N) −1 (R 3 mod N)). Modular exponentiation can be done using exponentiation by squaring by initializing the initial product to the Montgomery representation of 1, that is, to R mod N, and by replacing the multiply and square steps by Montgomery multiplies.
In mathematics, modular arithmetic is a system of arithmetic for integers, where numbers "wrap around" when reaching a certain value, called the modulus. The modern approach to modular arithmetic was developed by Carl Friedrich Gauss in his book Disquisitiones Arithmeticae , published in 1801.
The Tonelli–Shanks algorithm (referred to by Shanks as the RESSOL algorithm) is used in modular arithmetic to solve for r in a congruence of the form r 2 ≡ n (mod p), where p is a prime: that is, to find a square root of n modulo p.
Do n pointwise multiplications := in / (+) . If SMUL is used recursively, provide K as parameter. Otherwise, use some other multiplication function like T3MUL and reduce modulo + afterwards.
By making a modular multiplicative inverse table for the finite field and doing a lookup. By mapping to a composite field where inversion is simpler, and mapping back. By constructing a special integer (in case of a finite field of a prime order) or a special polynomial (in case of a finite field of a non-prime order) and dividing it by a .
The modular exponentiation in computing is the most computationally expensive part of the signing operation, but it may be computed before the message is known. Calculating the modular inverse k − 1 mod q {\displaystyle k^{-1}{\bmod {\,}}q} is the second most expensive part, and it may also be computed before the message is known.