enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Resampling (statistics) - Wikipedia

    en.wikipedia.org/wiki/Resampling_(statistics)

    Subsampling is an alternative method for approximating the sampling distribution of an estimator. The two key differences to the bootstrap are: the resample size is smaller than the sample size and; resampling is done without replacement. The advantage of subsampling is that it is valid under much weaker conditions compared to the bootstrap.

  3. Bootstrapping (statistics) - Wikipedia

    en.wikipedia.org/wiki/Bootstrapping_(statistics)

    We first resample the data to obtain a bootstrap resample. An example of the first resample might look like this X 1 * = x 2, x 1, x 10, x 10, x 3, x 4, x 6, x 7, x 1, x 9. There are some duplicates since a bootstrap resample comes from sampling with replacement from the data.

  4. Partial autocorrelation function - Wikipedia

    en.wikipedia.org/wiki/Partial_autocorrelation...

    Partial autocorrelation function of Lake Huron's depth with confidence interval (in blue, plotted around 0). In time series analysis, the partial autocorrelation function (PACF) gives the partial correlation of a stationary time series with its own lagged values, regressed the values of the time series at all shorter lags.

  5. Bootstrapping populations - Wikipedia

    en.wikipedia.org/wiki/Bootstrapping_populations

    Bootstrapping populations in statistics and mathematics starts with a sample {, …,} observed from a random variable.. When X has a given distribution law with a set of non fixed parameters, we denote with a vector , a parametric inference problem consists of computing suitable values – call them estimates – of these parameters precisely on the basis of the sample.

  6. Jackknife resampling - Wikipedia

    en.wikipedia.org/wiki/Jackknife_resampling

    Schematic of Jackknife Resampling. In statistics, the jackknife (jackknife cross-validation) is a cross-validation technique and, therefore, a form of resampling. It is especially useful for bias and variance estimation. The jackknife pre-dates other common resampling methods such as the bootstrap.

  7. Oversampling and undersampling in data analysis - Wikipedia

    en.wikipedia.org/wiki/Oversampling_and_under...

    To create a synthetic data point, take the vector between one of those k neighbors, and the current data point. Multiply this vector by a random number x which lies between 0, and 1. Add this to the current data point to create the new, synthetic data point. Many modifications and extensions have been made to the SMOTE method ever since its ...

  8. Exponential smoothing - Wikipedia

    en.wikipedia.org/wiki/Exponential_smoothing

    Exponential smoothing or exponential moving average (EMA) is a rule of thumb technique for smoothing time series data using the exponential window function. Whereas in the simple moving average the past observations are weighted equally, exponential functions are used to assign exponentially decreasing weights over time. It is an easily learned ...

  9. Time series - Wikipedia

    en.wikipedia.org/wiki/Time_series

    Time series analysis comprises methods for analyzing time series data in order to extract meaningful statistics and other characteristics of the data. Time series forecasting is the use of a model to predict future values based on previously observed values. Generally, time series data is modelled as a stochastic process.