Search results
Results from the WOW.Com Content Network
Tom Mike Apostol (/ ə ˈ p ɑː s əl / ə-POSS-əl; [1] August 20, 1923 – May 8, 2016) [2] was an American mathematician and professor at the California Institute of Technology specializing in analytic number theory, best known as the author of widely used mathematical textbooks.
The Project Mathematics! series of videos is a teaching aid for teachers to help students understand the basics of geometry and trigonometry.The series was developed by Tom M. Apostol and James F. Blinn, both from the California Institute of Technology.
N. I. Akhiezer, Elements of the Theory of Elliptic Functions, (1970) Moscow, translated into English as AMS Translations of Mathematical Monographs Volume 79 (1990) AMS, Rhode Island ISBN 0-8218-4532-2; Tom M. Apostol, Modular Functions and Dirichlet Series in Number Theory, Springer-Verlag, New York, 1976. ISBN 0-387-97127-0 (See Chapter 1.)
Functional analysis is a branch of mathematical analysis, the core of which is formed by the study of vector spaces endowed with some kind of limit-related structure (e.g. inner product, norm, topology, etc.) and the linear operators acting upon these spaces and respecting these structures in a suitable sense.
From Wikipedia, the free encyclopedia. Redirect page. Redirect to: Tom M. Apostol
A classic textbook in introductory mathematical analysis, written by G. H. Hardy. It was first published in 1908, and went through many editions. It was intended to help reform mathematics teaching in the UK, and more specifically in the University of Cambridge, and in schools preparing pupils to study mathematics at Cambridge. As such, it was ...
Rudin's text was the first modern English text on classical real analysis, and its organization of topics has been frequently imitated. [1] In Chapter 1, he constructs the real and complex numbers and outlines their properties. (In the third edition, the Dedekind cut construction is sent to an appendix for pedagogical reasons.) Chapter 2 ...
Analysis is a branch of mathematics that deals with real numbers and complex numbers and their functions. It has its beginnings in the rigorous formulation of calculus and it studies concepts such as continuity , integration and differentiability in general settings.