Search results
Results from the WOW.Com Content Network
Vacuum furnaces are used to carry out processes such as annealing, brazing, sintering and heat treatment with high consistency and low contamination. Characteristics of a vacuum furnace are: Uniform temperatures in the range. 800–3,000 °C (1,500–5,400 °F) Commercially available vacuum pumping systems can reach vacuum levels as low as 1 × ...
Vacuum furnaces is a relatively economical method of oxide prevention and is most often used to braze materials with very stable oxides (aluminum, titanium and zirconium) that cannot be brazed in atmosphere furnaces. Vacuum brazing is also used heavily with refractory materials and other exotic alloy combinations unsuited to atmosphere furnaces ...
A better choice for vacuum systems is the tin-silver eutectic, Sn95Ag5 (Sn-Ag eutectic is actually 96.5-3.5); its melting point of 230 °C (446 °F) allows bakeout up to 200 °C (392 °F). A similar 95-5 alloy, Sn95Sb5, is unsuitable as antimony has similar vapor pressure as lead. Take care to remove flux residues.
This Part is a supplementary book referenced by other sections of the Code. It provides mechanical properties, heat treatment, heat and product chemical composition and analysis, test specimens, and methodologies of testing for welding rods, filler metals and electrodes used in the construction of pressure vessels.
This is an accepted version of this page This is the latest accepted revision, reviewed on 31 December 2024. Manufacturing processes This section does not cite any sources.
An industrial furnace, also known as a direct heater or a direct fired heater, is a device used to provide heat for an industrial process, typically higher than 400 degrees Celsius. [1] They are used to provide heat for a process or can serve as reactor which provides heats of reaction. Furnace designs vary as to its function, heating duty ...
Vacuum systems usually consist of gauges, vapor jet and pumps, vapor traps and valves along with other extensional piping. A vessel that is operating under vacuum system may be any of these types such as processing tank, steam simulator, particle accelerator, or any other type of space that has an enclosed chamber to maintain the system in less than atmospheric gas pressure.
Since the 1970s, interrupter subcomponents have been assembled in a high-vacuum brazing furnace by a combined brazing-and-evacuation process. Tens (or hundreds) of bottles are processed in one batch, using a high-vacuum furnace that heats them at temperatures up to 900 °C and a pressure of 10 −6 mbar. [6]