Search results
Results from the WOW.Com Content Network
An unpublished computational program written in Pascal called Abra inspired this open-source software. Abra was originally designed for physicists to compute problems present in quantum mechanics. Kespers Peeters then decided to write a similar program in C computing language rather than Pascal, which he renamed Cadabra. However, Cadabra has ...
Video of spiral being propagated by level sets (curvature flow) in 2D.Left image shows zero-level solution. Right image shows the level-set scalar field. The Level-set method (LSM) is a conceptual framework for using level sets as a tool for numerical analysis of surfaces and shapes.
For a surface defined in 3D space, the mean curvature is related to a unit normal of the surface: = ^ where the normal chosen affects the sign of the curvature. The sign of the curvature depends on the choice of normal: the curvature is positive if the surface curves "towards" the normal.
In Riemannian geometry, the sectional curvature is one of the ways to describe the curvature of Riemannian manifolds. The sectional curvature K (σ p ) depends on a two-dimensional linear subspace σ p of the tangent space at a point p of the manifold.
The curvature of a Riemannian manifold can be described in various ways; the most standard one is the curvature tensor, given in terms of a Levi-Civita connection (or covariant differentiation) and Lie bracket [,] by the following formula: (,) = [,].
The normal curvature, k n, is the curvature of the curve projected onto the plane containing the curve's tangent T and the surface normal u; the geodesic curvature, k g, is the curvature of the curve projected onto the surface's tangent plane; and the geodesic torsion (or relative torsion), τ r, measures the rate of change of the surface ...
Newton's method uses curvature information (i.e. the second derivative) to take a more direct route. In calculus , Newton's method (also called Newton–Raphson ) is an iterative method for finding the roots of a differentiable function f {\displaystyle f} , which are solutions to the equation f ( x ) = 0 {\displaystyle f(x)=0} .
The product k 1 k 2 of the two principal curvatures is the Gaussian curvature, K, and the average (k 1 + k 2)/2 is the mean curvature, H. If at least one of the principal curvatures is zero at every point, then the Gaussian curvature will be 0 and the surface is a developable surface. For a minimal surface, the mean curvature is zero at every ...