enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Eigenvalue algorithm - Wikipedia

    en.wikipedia.org/wiki/Eigenvalue_algorithm

    Given an n × n square matrix A of real or complex numbers, an eigenvalue λ and its associated generalized eigenvector v are a pair obeying the relation [1] =,where v is a nonzero n × 1 column vector, I is the n × n identity matrix, k is a positive integer, and both λ and v are allowed to be complex even when A is real.l When k = 1, the vector is called simply an eigenvector, and the pair ...

  3. Screw theory - Wikipedia

    en.wikipedia.org/wiki/Screw_theory

    Screw theory is the algebraic calculation of pairs of vectors, also known as dual vectors [1] – such as angular and linear velocity, or forces and moments – that arise in the kinematics and dynamics of rigid bodies.

  4. Arnoldi iteration - Wikipedia

    en.wikipedia.org/wiki/Arnoldi_iteration

    In numerical linear algebra, the Arnoldi iteration is an eigenvalue algorithm and an important example of an iterative method.Arnoldi finds an approximation to the eigenvalues and eigenvectors of general (possibly non-Hermitian) matrices by constructing an orthonormal basis of the Krylov subspace, which makes it particularly useful when dealing with large sparse matrices.

  5. Inverse iteration - Wikipedia

    en.wikipedia.org/wiki/Inverse_iteration

    In numerical analysis, inverse iteration (also known as the inverse power method) is an iterative eigenvalue algorithm. It allows one to find an approximate eigenvector when an approximation to a corresponding eigenvalue is already known. The method is conceptually similar to the power method. It appears to have originally been developed to ...

  6. Simpson's rule - Wikipedia

    en.wikipedia.org/wiki/Simpson's_rule

    In the task of estimation of full area of narrow peak-like functions, Simpson's rules are much less efficient than trapezoidal rule. Namely, composite Simpson's 1/3 rule requires 1.8 times more points to achieve the same accuracy as trapezoidal rule. [7] Composite Simpson's 3/8 rule is even less accurate.

  7. Vector calculus identities - Wikipedia

    en.wikipedia.org/wiki/Vector_calculus_identities

    Another method of deriving vector and tensor derivative identities is to replace all occurrences of a vector in an algebraic identity by the del operator, provided that no variable occurs both inside and outside the scope of an operator or both inside the scope of one operator in a term and outside the scope of another operator in the same term ...

  8. Firefly algorithm - Wikipedia

    en.wikipedia.org/wiki/Firefly_algorithm

    In pseudocode the algorithm can be stated as: Begin 1) Objective function: (), = (,,...,); 2) Generate an initial population of fireflies (=,, …,);. 3) Formulate light intensity I so that it is associated with () (for example, for maximization problems, () or simply = ();) 4) Define absorption coefficient γ while (t < MaxGeneration) for i = 1 : n (all n fireflies) for j = 1 : i (n fireflies ...

  9. Conjugate gradient method - Wikipedia

    en.wikipedia.org/wiki/Conjugate_gradient_method

    This suggests taking the first basis vector p 0 to be the negative of the gradient of f at x = x 0. The gradient of f equals Ax − b. Starting with an initial guess x 0, this means we take p 0 = b − Ax 0. The other vectors in the basis will be conjugate to the gradient, hence the name conjugate gradient method.