Search results
Results from the WOW.Com Content Network
In graph theory and computer science, an adjacency matrix is a square matrix used to represent a finite graph. The elements of the matrix indicate whether pairs of vertices are adjacent or not in the graph. In the special case of a finite simple graph, the adjacency matrix is a (0,1)-matrix with zeros on its diagonal.
An adjacency list representation for a graph associates each vertex in the graph with the collection of its neighbouring vertices or edges. There are many variations of this basic idea, differing in the details of how they implement the association between vertices and collections, in how they implement the collections, in whether they include both vertices and edges or only vertices as first ...
The adjacency matrix of a complete bipartite graph K m,n has eigenvalues √ nm, − √ nm and 0; with multiplicity 1, 1 and n + m − 2 respectively. [12] The Laplacian matrix of a complete bipartite graph K m,n has eigenvalues n + m, n, m, and 0; with multiplicity 1, m − 1, n − 1 and 1 respectively. A complete bipartite graph K m,n has m ...
Graphic representation of a minute fraction of the WWW, demonstrating hyperlinks.. Graph drawing is an area of mathematics and computer science combining methods from geometric graph theory and information visualization to derive two-dimensional depictions of graphs arising from applications such as social network analysis, cartography, linguistics, and bioinformatics.
An algebraic representation of the Hamiltonian cycles of a given weighted digraph (whose arcs are assigned weights from a certain ground field) is the Hamiltonian cycle polynomial of its weighted adjacency matrix defined as the sum of the products of the arc weights of the digraph's Hamiltonian cycles. This polynomial is not identically zero as ...
adjacency matrix The adjacency matrix of a graph is a matrix whose rows and columns are both indexed by vertices of the graph, with a one in the cell for row i and column j when vertices i and j are adjacent, and a zero otherwise. [4] adjacent 1. The relation between two vertices that are both endpoints of the same edge. [2] 2.
The proof is bijective: a matrix A is an adjacency matrix of a DAG if and only if A + I is a (0,1) matrix with all eigenvalues positive, where I denotes the identity matrix. Because a DAG cannot have self-loops, its adjacency matrix must have a zero diagonal, so adding I preserves the property that all matrix coefficients are 0 or 1. [13]
is the Hasse diagram of a finite Boolean algebra. is a median graph. Every median graph is an isometric subgraph of a hypercube, and can be formed as a retraction of a hypercube. has more than 2 2 n-2 perfect matchings. (this is another consequence that follows easily from the inductive construction.) is arc transitive and symmetric.