Search results
Results from the WOW.Com Content Network
Breadth-first search (BFS) is an algorithm for searching a tree data structure for a node that satisfies a given property. It starts at the tree root and explores all nodes at the present depth prior to moving on to the nodes at the next depth level.
The following pseudo-code of a 1-D distributed memory BFS [5] was originally designed for IBM BlueGene/L systems, which have a 3D torus network architecture. Because the synchronization is the main extra cost for parallelized BFS, the authors of this paper also developed a scalable all-to-all communication based on point-to-point communications .
In computer science, lexicographic breadth-first search or Lex-BFS is a linear time algorithm for ordering the vertices of a graph.The algorithm is different from a breadth-first search, but it produces an ordering that is consistent with breadth-first search.
In computer science, tree traversal (also known as tree search and walking the tree) is a form of graph traversal and refers to the process of visiting (e.g. retrieving, updating, or deleting) each node in a tree data structure, exactly once.
A breadth-first search (BFS) is another technique for traversing a finite graph. BFS visits the sibling vertices before visiting the child vertices, and a queue is used in the search process. This algorithm is often used to find the shortest path from one vertex to another.
Robot in a wooden maze. A maze-solving algorithm is an automated method for solving a maze.The random mouse, wall follower, Pledge, and Trémaux's algorithms are designed to be used inside the maze by a traveler with no prior knowledge of the maze, whereas the dead-end filling and shortest path algorithms are designed to be used by a person or computer program that can see the whole maze at once.
In computer science, the Edmonds–Karp algorithm is an implementation of the Ford–Fulkerson method for computing the maximum flow in a flow network in (| | | |) time. The algorithm was first published by Yefim Dinitz in 1970, [1] [2] and independently published by Jack Edmonds and Richard Karp in 1972. [3]
The following is the skeleton of a generic branch and bound algorithm for minimizing an arbitrary objective function f. [3] To obtain an actual algorithm from this, one requires a bounding function bound, that computes lower bounds of f on nodes of the search tree, as well as a problem-specific branching rule.