enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Stress–strain curve - Wikipedia

    en.wikipedia.org/wiki/Stress–strain_curve

    Generally speaking, curves representing the relationship between stress and strain in any form of deformation can be regarded as stress–strain curves. The stress and strain can be normal, shear, or mixture, and can also can be uniaxial, biaxial, or multiaxial, even change with time. The form of deformation can be compression, stretching ...

  3. Goodman relation - Wikipedia

    en.wikipedia.org/wiki/Goodman_relation

    Goodman relation. Within the branch of materials science known as material failure theory, the Goodman relation (also called a Goodman diagram, a Goodman-Haigh diagram, a Haigh diagram or a Haigh-Soderberg diagram) is an equation used to quantify the interaction of mean and alternating stresses on the fatigue life of a material. [1]

  4. Stress relaxation - Wikipedia

    en.wikipedia.org/wiki/Stress_relaxation

    Stress relaxation. In materials science, stress relaxation is the observed decrease in stress in response to strain generated in the structure. This is primarily due to keeping the structure in a strained condition for some finite interval of time hence causing some amount of plastic strain. This should not be confused with creep, which is a ...

  5. Viscoelasticity - Wikipedia

    en.wikipedia.org/wiki/Viscoelasticity

    The initial stress is due to the elastic response of the material. Then, the stress relaxes over time due to the viscous effects in the material. Typically, either a tensile, compressive, bulk compression, or shear strain is applied. The resulting stress vs. time data can be fitted with a number of equations, called models.

  6. Time–temperature superposition - Wikipedia

    en.wikipedia.org/wiki/Time–temperature...

    The time–temperature superposition principle is a concept in polymer physics and in the physics of glass-forming liquids. [1][2][3] This superposition principle is used to determine temperature-dependent mechanical properties of linear viscoelastic materials from known properties at a reference temperature.

  7. Stress–strain analysis - Wikipedia

    en.wikipedia.org/wiki/Stress–strain_analysis

    Stress–strain analysis (or stress analysis) is an engineering discipline that uses many methods to determine the stresses and strains in materials and structures subjected to forces. In continuum mechanics, stress is a physical quantity that expresses the internal forces that neighboring particles of a continuous material exert on each other ...

  8. Creep-testing machine - Wikipedia

    en.wikipedia.org/wiki/Creep-testing_machine

    Creep is dependent on time so the curve that the machine generates is a time vs. strain graph. The slope of a creep curve is the creep rate dε/dt [citation needed] The trend of the curve is an upward slope. The graphs are important to learn the trends of the alloys or materials used and by the production of the creep-time graph, it is easier ...

  9. Yerkes–Dodson law - Wikipedia

    en.wikipedia.org/wiki/Yerkes–Dodson_law

    The Yerkes–Dodson law is an empirical relationship between arousal and performance, originally developed by psychologists Robert M. Yerkes and John Dillingham Dodson in 1908. [1] The law dictates that performance increases with physiological or mental arousal, but only up to a point. When levels of arousal become too high, performance decreases.