Search results
Results from the WOW.Com Content Network
Kleinberg, J., and Tardos, E. (2005) Algorithm Design, Chapter 1, pp 1–12. See companion website for the Text Archived 2011-05-14 at the Wayback Machine. Knuth, D. E. (1996). Stable Marriage and Its Relation to Other Combinatorial Problems: An Introduction to the Mathematical Analysis of Algorithms. CRM Proceedings and Lecture Notes.
Many mathematical problems have been stated but not yet solved. These problems come from many areas of mathematics, such as theoretical physics, computer science, algebra, analysis, combinatorics, algebraic, differential, discrete and Euclidean geometries, graph theory, group theory, model theory, number theory, set theory, Ramsey theory, dynamical systems, and partial differential equations.
The of the quadratic function y = 1 / 2 x 2 − 3x + 5 / 2 are the places where the graph intersects the x-axis, the values x = 1 and x = 5. They can be found via the quadratic formula. In elementary algebra, the quadratic formula is a closed-form expression describing the solutions of a quadratic equation.
Flowchart of using successive subtractions to find the greatest common divisor of number r and s. In mathematics and computer science, an algorithm (/ ˈ æ l ɡ ə r ɪ ð əm / ⓘ) is a finite sequence of mathematically rigorous instructions, typically used to solve a class of specific problems or to perform a computation. [1]
The P versus NP problem, which remains open to this day, is also important for discrete mathematics, since its solution would potentially impact a large number of computationally difficult problems. [45] Discrete mathematics includes: [14] Combinatorics, the art of enumerating mathematical objects that satisfy some given constraints.
In classical real analysis, one way to define a real number is as an equivalence class of Cauchy sequences of rational numbers.. In constructive mathematics, one way to construct a real number is as a function ƒ that takes a positive integer and outputs a rational ƒ(n), together with a function g that takes a positive integer n and outputs a positive integer g(n) such that
It is to be regretted that this first comprehensive and thorough-going presentation of a mathematical logic and the derivation of mathematics from it [is] so greatly lacking in formal precision in the foundations (contained in 1– 21 of Principia [i.e., sections 1– 5 (propositional logic), 8–14 (predicate logic with identity/equality), 20 ...
The real numbers 0 and 1 are commonly identified with the natural numbers 0 and 1. This allows identifying any natural number n with the sum of n real numbers equal to 1 . This identification can be pursued by identifying a negative integer − n {\displaystyle -n} (where n {\displaystyle n} is a natural number) with the additive inverse − n ...