enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Partition function (number theory) - Wikipedia

    en.wikipedia.org/wiki/Partition_function_(number...

    The values (), …, of the partition function (1, 2, 3, 5, 7, 11, 15, and 22) can be determined by counting the Young diagrams for the partitions of the numbers from 1 to 8. In number theory , the partition function p ( n ) represents the number of possible partitions of a non-negative integer n .

  3. Integer partition - Wikipedia

    en.wikipedia.org/wiki/Integer_partition

    The order-dependent composition 1 + 3 is the same partition as 3 + 1, and the two distinct compositions 1 + 2 + 1 and 1 + 1 + 2 represent the same partition as 2 + 1 + 1. An individual summand in a partition is called a part. The number of partitions of n is given by the partition function p(n). So p(4) = 5.

  4. Triangle of partition numbers - Wikipedia

    en.wikipedia.org/wiki/Triangle_of_partition_numbers

    These two types of partition are in bijection with each other, by a diagonal reflection of their Young diagrams. Their numbers can be arranged into a triangle, the triangle of partition numbers , in which the n {\displaystyle n} th row gives the partition numbers p 1 ( n ) , p 2 ( n ) , … , p n ( n ) {\displaystyle p_{1}(n),p_{2}(n),\dots ,p ...

  5. List of prime numbers - Wikipedia

    en.wikipedia.org/wiki/List_of_prime_numbers

    2.39 Partition primes. ... more prime permutations of some or all the decimal digits than for any smaller number. 2, 13 ... form x 4 + y 4, where x,y > 0. 2, 17 ...

  6. Category:Integer partitions - Wikipedia

    en.wikipedia.org/wiki/Category:Integer_partitions

    Triangle of partition numbers; Y. Young tableau; Young's lattice This page was last edited on 15 May 2022, at 19:00 (UTC). Text is available under the Creative ...

  7. Lambek–Moser theorem - Wikipedia

    en.wikipedia.org/wiki/Lambek–Moser_theorem

    The Lambek–Moser theorem is a mathematical description of partitions of the natural numbers into two complementary sets. For instance, it applies to the partition of numbers into even and odd, or into prime and non-prime (one and the composite numbers). There are two parts to the Lambek–Moser theorem.

  8. Bell number - Wikipedia

    en.wikipedia.org/wiki/Bell_number

    Thus, in the equation relating the Bell numbers to the Stirling numbers, each partition counted on the left hand side of the equation is counted in exactly one of the terms of the sum on the right hand side, the one for which k is the number of sets in the partition. [8] Spivey 2008 has given a formula that combines both of these summations:

  9. Quotition and partition - Wikipedia

    en.wikipedia.org/wiki/Quotition_and_partition

    If there is a remainder in solving a partition problem, the parts will end up with unequal sizes. For example, if 52 cards are dealt out to 5 players, then 3 of the players will receive 10 cards each, and 2 of the players will receive 11 cards each, since 52 5 = 10 + 2 5 {\textstyle {\frac {52}{5}}=10+{\frac {2}{5}}} .