Search results
Results from the WOW.Com Content Network
The congruence relation, modulo m, partitions the set of integers into m congruence classes. Operations of addition and multiplication can be defined on these m objects in the following way: To either add or multiply two congruence classes, first pick a representative (in any way) from each class, then perform the usual operation for integers on the two representatives and finally take the ...
If p is a prime number which is not a divisor of b, then ab p−1 mod p = a mod p, due to Fermat's little theorem. Inverse: [(−a mod n) + (a mod n)] mod n = 0. b −1 mod n denotes the modular multiplicative inverse, which is defined if and only if b and n are relatively prime, which is the case when the left hand side is defined: [(b −1 ...
Time-keeping on this clock uses arithmetic modulo 12. Adding 4 hours to 9 o'clock gives 1 o'clock, since 13 is congruent to 1 modulo 12. In mathematics, modular arithmetic is a system of arithmetic for integers, where numbers "wrap around" when reaching a certain value, called the modulus.
Otherwise, there is some b 2 ∈ G\(A∪A 1) and we can start all over again, defining A 2 as the set whose elements are the numbers b 2, ab 2, a 2 b 2, ..., a k − 1 b 2 reduced modulo p. Since G is finite, this process must stop at some point and this proves that k divides p − 1 .
Then () = means that the order of the group is 8 (i.e., there are 8 numbers less than 20 and coprime to it); () = means the order of each element divides 4, that is, the fourth power of any number coprime to 20 is congruent to 1 (mod 20).
Even without knowledge that we are working in the multiplicative group of integers modulo n, we can show that a actually has an order by noting that the powers of a can only take a finite number of different values modulo n, so according to the pigeonhole principle there must be two powers, say s and t and without loss of generality s > t, such that a s ≡ a t (mod n).
The original version of 24 is played with an ordinary deck of playing cards with all the face cards removed. The aces are taken to have the value 1 and the basic game proceeds by having 4 cards dealt and the first player that can achieve the number 24 exactly using only allowed operations (addition, subtraction, multiplication, division, and parentheses) wins the hand.
The number 3 is a primitive root modulo 7 [5] because = = = = = = = = = = = = (). Here we see that the period of 3 k modulo 7 is 6. The remainders in the period, which are 3, 2, 6, 4, 5, 1, form a rearrangement of all nonzero remainders modulo 7, implying that 3 is indeed a primitive root modulo 7.