Search results
Results from the WOW.Com Content Network
Interactive animation of the structure of ATP. Adenosine triphosphate (ATP) is a nucleoside triphosphate [2] that provides energy to drive and support many processes in living cells, such as muscle contraction, nerve impulse propagation, and chemical synthesis.
The adenylate energy charge is an index used to measure the energy status of biological cells.. ATP or Mg-ATP is the principal molecule for storing and transferring energy in the cell : it is used for biosynthetic pathways, maintenance of transmembrane gradients, movement, cell division, etc...
Structure of ATP Structure of ADP Four possible resonance structures for inorganic phosphate. ATP hydrolysis is the catabolic reaction process by which chemical energy that has been stored in the high-energy phosphoanhydride bonds in adenosine triphosphate (ATP) is released after splitting these bonds, for example in muscles, by producing work in the form of mechanical energy.
If you see this term in a text, there are a couple of possible meanings.
Phosphorylation is essential to the processes of both anaerobic and aerobic respiration, which involve the production of adenosine triphosphate (ATP), the "high-energy" exchange medium in the cell. During aerobic respiration, ATP is synthesized in the mitochondrion by addition of a third phosphate group to adenosine diphosphate (ADP) in a ...
Adenosine triphosphate, an organic chemical used for driving biological processes . ATPase, any enzyme that makes use of adenosine triphosphate; Advanced Technology Program, US government program
In cellular biology, active transport is the movement of molecules or ions across a cell membrane from a region of lower concentration to a region of higher concentration—against the concentration gradient. Active transport requires cellular energy to achieve this movement.
ATP is the only type of usable form of chemical energy for musculoskeletal activity. It is stored in most cells, particularly in muscle cells. Other forms of chemical energy, such as those available from oxygen and food, must be transformed into ATP before they can be utilized by the muscle cells.