enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Lagrange multiplier - Wikipedia

    en.wikipedia.org/wiki/Lagrange_multiplier

    The constrained extrema of f are critical points of the Lagrangian , but they are not necessarily local extrema of (see § Example 2 below). One may reformulate the Lagrangian as a Hamiltonian , in which case the solutions are local minima for the Hamiltonian.

  3. Maximum and minimum - Wikipedia

    en.wikipedia.org/wiki/Maximum_and_minimum

    In both the global and local cases, the concept of a strict extremum can be defined. For example, x ∗ is a strict global maximum point if for all x in X with x ≠ x ∗, we have f(x ∗) > f(x), and x ∗ is a strict local maximum point if there exists some ε > 0 such that, for all x in X within distance ε of x ∗ with x ≠ x ∗, we ...

  4. Calculus of variations - Wikipedia

    en.wikipedia.org/wiki/Calculus_of_Variations

    [e] The extremum [] is called a local maximum if everywhere in an arbitrarily small neighborhood of , and a local minimum if there. For a function space of continuous functions, extrema of corresponding functionals are called strong extrema or weak extrema , depending on whether the first derivatives of the continuous functions are respectively ...

  5. Fermat's theorem (stationary points) - Wikipedia

    en.wikipedia.org/wiki/Fermat's_theorem...

    Fermat's theorem is central to the calculus method of determining maxima and minima: in one dimension, one can find extrema by simply computing the stationary points (by computing the zeros of the derivative), the non-differentiable points, and the boundary points, and then investigating this set to determine the extrema.

  6. Karush–Kuhn–Tucker conditions - Wikipedia

    en.wikipedia.org/wiki/Karush–Kuhn–Tucker...

    Allowing inequality constraints, the KKT approach to nonlinear programming generalizes the method of Lagrange multipliers, which allows only equality constraints. Similar to the Lagrange approach, the constrained maximization (minimization) problem is rewritten as a Lagrange function whose optimal point is a global maximum or minimum over the ...

  7. Extreme point - Wikipedia

    en.wikipedia.org/wiki/Extreme_point

    Throughout, it is assumed that is a real or complex vector space.. For any ,,, say that lies between [2] and if and there exists a < < such that = + ().. If is a subset of and , then is called an extreme point [2] of if it does not lie between any two distinct points of .

  8. Nonlinear programming - Wikipedia

    en.wikipedia.org/wiki/Nonlinear_programming

    NLopt (C/C++ implementation, with numerous interfaces including Julia, Python, R, MATLAB/Octave), includes various nonlinear programming solvers SciPy (de facto standard for scientific Python) has scipy.optimize solver, which includes several nonlinear programming algorithms (zero-order, first order and second order ones).

  9. Parks–McClellan filter design algorithm - Wikipedia

    en.wikipedia.org/wiki/Parks–McClellan_filter...

    The extrema must occur at the pass and stop band edges and at either ω=0 or ω=π or both. The derivative of a polynomial of degree L is a polynomial of degree L−1, which can be zero at most at L−1 places. [3] So the maximum number of local extrema is the L−1 local extrema plus the 4 band edges, giving a total of L+3 extrema.