Search results
Results from the WOW.Com Content Network
In number theory, a perfect number is a positive integer that is equal to the sum of its positive proper divisors, that is, divisors excluding the number itself. For instance, 6 has proper divisors 1, 2 and 3, and 1 + 2 + 3 = 6, so 6 is a perfect number. The next perfect number is 28, since 1 + 2 + 4 + 7 + 14 = 28.
Perfect numbers are natural numbers that equal the sum of their positive proper divisors, which are divisors excluding the number itself. So, 6 is a perfect number because the proper divisors of 6 are 1, 2, and 3, and 1 + 2 + 3 = 6. [2] [4] Euclid proved c. 300 BCE that every Mersenne prime M p = 2 p − 1 has a corresponding perfect number M p ...
A unitary perfect number is an integer which is the sum of its positive ... perfect number because 1, 3, 4, 5, 12, 15, and 20 are its proper unitary divisors, and 1 ...
In mathematics, a multiply perfect number (also called multiperfect number or pluperfect number) is a generalization of a perfect number. For a given natural number k , a number n is called k -perfect (or k -fold perfect) if the sum of all positive divisors of n (the divisor function , σ ( n )) is equal to kn ; a number is thus perfect if and ...
A perfect number is a natural number that equals the sum of its proper divisors, the numbers that are less than it and divide it evenly (with remainder zero). For instance, the proper divisors of 6 are 1, 2, and 3, which sum to 6, so 6 is perfect. A Mersenne prime is a prime number of the form M p = 2 p − 1, one less than a power of two.
In number theory, the aliquot sum s(n) of a positive integer n is the sum of all proper divisors of n, that is, all divisors of n other than n itself. That is, = |,. It can be used to characterize the prime numbers, perfect numbers, sociable numbers, deficient numbers, abundant numbers, and untouchable numbers, and to define the aliquot sequence of a number.
Pierre de Fermat gave a criterion for numbers of the form 8a + 1 and 8a + 3 to be sums of a square plus twice another square, but did not provide a proof. [1] N. Beguelin noticed in 1774 [2] that every positive integer which is neither of the form 8n + 7, nor of the form 4n, is the sum of three squares, but did not provide a satisfactory proof. [3]
Albert Girard was the first to make the observation, characterizing the positive integers (not necessarily primes) that are expressible as the sum of two squares of positive integers; this was published in 1625. [2] [3] The statement that every prime p of the form + is the sum of two squares is sometimes called Girard's theorem. [4]