Search results
Results from the WOW.Com Content Network
In mathematics, the Riemann hypothesis is the conjecture that the Riemann zeta function has its zeros only at the negative even integers and complex numbers with real part 1 / 2 . Many consider it to be the most important unsolved problem in pure mathematics . [ 1 ]
David Hilbert did not work in the central areas of analytic number theory, but his name has become known for the Hilbert–Pólya conjecture due to a story told by Ernst Hellinger, a student of Hilbert, to André Weil. Hellinger said that Hilbert announced in his seminar in the early 1900s that he expected the Riemann Hypothesis would be a ...
The extended Riemann hypothesis asserts that for every number field K and every complex number s with ζ K (s) = 0: if the real part of s is between 0 and 1, then it is in fact 1/2. The ordinary Riemann hypothesis follows from the extended one if one takes the number field to be Q, with ring of integers Z.
Specifically, the Riemann Hypothesis is about when 𝜁(s)=0; the official statement is, “Every nontrivial zero of the Riemann zeta function has real part 1/2.”
Hilbert's problems ranged greatly in topic and precision. Some of them, like the 3rd problem, which was the first to be solved, or the 8th problem (the Riemann hypothesis), which still remains unresolved, were presented precisely enough to enable a clear affirmative or negative answer.
The Riemann hypothesis is that all nontrivial zeros of the analytical continuation of the Riemann zeta function have a real part of 1 / 2 . A proof or disproof of this would have far-reaching implications in number theory , especially for the distribution of prime numbers .
It asks for more work on the distribution of primes and generalizations of Riemann hypothesis to other rings where prime ideals take the place of primes. Absolute value of the ζ-function. Hilbert's eighth problem includes the Riemann hypothesis, which states that this function can only have non-trivial zeroes along the line x = 1/2 [2].
In mathematics, the grand Riemann hypothesis is a generalisation of the Riemann hypothesis and generalized Riemann hypothesis. It states that the nontrivial zeros of all automorphic L -functions lie on the critical line 1 2 + i t {\displaystyle {\frac {1}{2}}+it} with t {\displaystyle t} a real number variable and i {\displaystyle i} the ...