Search results
Results from the WOW.Com Content Network
In mathematics, more specifically in functional analysis, a Banach space (pronounced ) is a complete normed vector space.Thus, a Banach space is a vector space with a metric that allows the computation of vector length and distance between vectors and is complete in the sense that a Cauchy sequence of vectors always converges to a well-defined limit that is within the space.
Tsirelson space, a reflexive Banach space in which neither nor can be embedded. W.T. Gowers construction of a space X {\displaystyle X} that is isomorphic to X ⊕ X ⊕ X {\displaystyle X\oplus X\oplus X} but not X ⊕ X {\displaystyle X\oplus X} serves as a counterexample for weakening the premises of the Schroeder–Bernstein theorem [ 1 ]
In mathematics, an inner product space (or, rarely, a Hausdorff pre-Hilbert space [1] [2]) is a real vector space or a complex vector space with an operation called an inner product. The inner product of two vectors in the space is a scalar , often denoted with angle brackets such as in a , b {\displaystyle \langle a,b\rangle } .
An important example of a Banach space is a Hilbert space, where the norm arises from an inner product. Hilbert spaces are of fundamental importance in many areas, including the mathematical formulation of quantum mechanics , stochastic processes , and time-series analysis .
In mathematics, especially functional analysis, a Banach algebra, named after Stefan Banach, is an associative algebra over the real or complex numbers (or over a non-Archimedean complete normed field) that at the same time is also a Banach space, that is, a normed space that is complete in the metric induced by the norm.
Uniform Boundedness Principle — Let be a Banach space, a normed vector space and (,) the space of all continuous linear operators from into . Suppose that F {\displaystyle F} is a collection of continuous linear operators from X {\displaystyle X} to Y . {\displaystyle Y.}
In functional analysis, the open mapping theorem, also known as the Banach–Schauder theorem or the Banach theorem [1] (named after Stefan Banach and Juliusz Schauder), is a fundamental result that states that if a bounded or continuous linear operator between Banach spaces is surjective then it is an open map.
Let and be Banach spaces, : a closed linear operator whose domain () is dense in , and ′ the transpose of . The theorem asserts that the following conditions are equivalent: The theorem asserts that the following conditions are equivalent: