Search results
Results from the WOW.Com Content Network
Thus the fraction 3 / 4 can be used to represent the ratio 3:4 (the ratio of the part to the whole), and the division 3 ÷ 4 (three divided by four). We can also write negative fractions, which represent the opposite of a positive fraction. For example, if 1 / 2 represents a half-dollar profit, then − 1 / 2 represents ...
This is denoted as 20 / 5 = 4, or 20 / 5 = 4. [2] In the example, 20 is the dividend, 5 is the divisor, and 4 is the quotient. Unlike the other basic operations, when dividing natural numbers there is sometimes a remainder that will not go evenly into the dividend; for example, 10 / 3 leaves a remainder of 1, as 10 is not a multiple of 3.
For example, the numerators of fractions with common denominators can simply be added, such that + = and that <, since each fraction has the common denominator 12. Without computing a common denominator, it is not obvious as to what 5 12 + 11 18 {\displaystyle {\frac {5}{12}}+{\frac {11}{18}}} equals, or whether 5 12 {\displaystyle {\frac {5 ...
It is valid to divide both sides by , obtaining the following equation: x + 2 x − 2 = 0. {\displaystyle {\frac {x+2}{x-2}}=0.} This is valid because the only value of x {\displaystyle x} that makes x − 2 {\displaystyle x-2} equal to zero is x = 2 , {\displaystyle x=2,} which is not a solution to the original equation.
In the second step, they were divided by 3. The final result, 4 / 3 , is an irreducible fraction because 4 and 3 have no common factors other than 1. The original fraction could have also been reduced in a single step by using the greatest common divisor of 90 and 120, which is 30. As 120 ÷ 30 = 4, and 90 ÷ 30 = 3, one gets
The factor x 2 − 4x + 8 is irreducible over the reals, as its discriminant (−4) 2 − 4×8 = −16 is negative. Thus the partial fraction decomposition over the reals has the shape + (+) = + + + Multiplying through by x 3 − 4x 2 + 8x, we have the polynomial identity
[1] [2] [3] [better source needed]. For example, 3 x 2 − 2 x y + c {\displaystyle 3x^{2}-2xy+c} is an algebraic expression. Since taking the square root is the same as raising to the power 1 / 2 , the following is also an algebraic expression:
Zero divided by a negative or positive number is either zero or is expressed as a fraction with zero as numerator and the finite quantity as denominator. Zero divided by zero is zero. In 830, Mahāvīra unsuccessfully tried to correct the mistake Brahmagupta made in his book Ganita Sara Samgraha : "A number remains unchanged when divided by zero."