enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Newton's theorem of revolving orbits - Wikipedia

    en.wikipedia.org/wiki/Newton's_theorem_of...

    If k 2 is greater than one, F 2 − F 1 is a negative number; thus, the added inverse-cube force is attractive, as observed in the green planet of Figures 1–4 and 9. By contrast, if k 2 is less than one, F 2 − F 1 is a positive number; the added inverse-cube force is repulsive , as observed in the green planet of Figures 5 and 10, and in ...

  3. Exoplanet orbital and physical parameters - Wikipedia

    en.wikipedia.org/wiki/Exoplanet_orbital_and...

    The discovery of the low-density Earth-mass planet Kepler-138d shows that there is an overlapping range of masses in which both rocky planets and low-density planets occur. [51] A low-mass low-density planets could be an ocean planet or super-Earth with a remnant hydrogen atmosphere, or a hot planet with a steam atmosphere, or a mini-Neptune ...

  4. Angular mechanics - Wikipedia

    en.wikipedia.org/wiki/Angular_mechanics

    When planets spin, they generate angular momentum. This does things such as cause the planet to be slightly oval-shaped, and cause deformities [6] in the planet. Another example of angular mechanics in planetary motion is orbiting around a star. Because of the speed of the orbit, they do not go plummeting into their star.

  5. Retrograde and prograde motion - Wikipedia

    en.wikipedia.org/wiki/Retrograde_and_prograde_motion

    This results in the axial tilt of accreted planets ranging from 0 to 180 degrees with any direction as likely as any other with both prograde and retrograde spins equally probable. Therefore, prograde spin with small axial tilt, common for the solar system's terrestrial planets except for Venus, is not common for terrestrial planets in general ...

  6. Celestial mechanics - Wikipedia

    en.wikipedia.org/wiki/Celestial_mechanics

    Dynamics of the celestial spheres concerns pre-Newtonian explanations of the causes of the motions of the stars and planets. Dynamical time scale; Ephemeris is a compilation of positions of naturally occurring astronomical objects as well as artificial satellites in the sky at a given time or times. Gravitation

  7. Tidal locking - Wikipedia

    en.wikipedia.org/wiki/Tidal_locking

    In Mercury's case, the planet completes three rotations for every two revolutions around the Sun, a 3:2 spin–orbit resonance. In the special case where an orbit is nearly circular and the body's rotation axis is not significantly tilted, such as the Moon, tidal locking results in the same hemisphere of the revolving object constantly facing ...

  8. Nodal precession - Wikipedia

    en.wikipedia.org/wiki/Nodal_precession

    The rate of precession depends on the inclination of the orbital plane to the equatorial plane, as well as the orbital eccentricity.. For a satellite in a prograde orbit around Earth, the precession is westward (nodal regression), that is, the node and satellite move in opposite directions. [1]

  9. Spheroid - Wikipedia

    en.wikipedia.org/wiki/Spheroid

    The planet Jupiter is a slight oblate spheroid with a flattening of 0.06487. The oblate spheroid is the approximate shape of rotating planets and other celestial bodies, including Earth, Saturn, Jupiter, and the quickly spinning star Altair. Saturn is the most oblate planet in the Solar System, with a flattening of 0.09796. [5]