Search results
Results from the WOW.Com Content Network
Electrode potentials of successive elementary half-reactions cannot be directly added. However, the corresponding Gibbs free energy changes (∆G°) must satisfy ∆G° = – z FE°, where z electrons are transferred, and the Faraday constant F is the conversion factor describing Coulombs transferred per mole electrons. Those Gibbs free energy ...
The values below are standard apparent reduction potentials (E°') for electro-biochemical half-reactions measured at 25 °C, 1 atmosphere and a pH of 7 in aqueous solution. [1] [2] The actual physiological potential depends on the ratio of the reduced (Red) and oxidized (Ox) forms according to the Nernst equation and the thermal voltage.
The easiest way to proceed is simply to use energies (nE) directly expressed in electron-volt (eV), because the Faraday constant F and the sign minus simplifies on both side of the equation. So, the values of E in volt must be simply multiplied by the number (n) of electron transferred in the considered half-reaction.
Depiction of common redox reactions in the environment. Adapted from figures by Zhang [1] and Gorny. [2] Redox pairs are listed with the oxidizer (electron acceptor) in red and the reducer (electron donator) in black. Relative favorability of redox reactions in marine sediments based on energy.
In aqueous solutions, redox potential is a measure of the tendency of the solution to either gain or lose electrons in a reaction. A solution with a higher (more positive) reduction potential than some other molecule will have a tendency to gain electrons from this molecule (i.e. to be reduced by oxidizing this other molecule) and a solution with a lower (more negative) reduction potential ...
The electric potential also varies with temperature, concentration and pressure. Since the oxidation potential of a half-reaction is the negative of the reduction potential in a redox reaction, it is sufficient to calculate either one of the potentials. Therefore, standard electrode potential is commonly written as standard reduction potential.
Standard electrode potentials are available in a table of values. Using these values, the actual electrode potential for a redox couple can be calculated as a function of the ratio of concentrations. The equilibrium potential for a general redox half-reaction (See #Equilibrium constant above for an explanation of the symbols)
The overall chemical reaction taking place in a cell is made up of two independent half-reactions, which describe chemical changes at the two electrodes. To focus on the reaction at the working electrode, the reference electrode is standardized with constant (buffered or saturated) concentrations of each participant of the redox reaction. [1]