Search results
Results from the WOW.Com Content Network
A large overlap between analysis of single-cell live data, and modelling of biological systems using ordinary differential equations exists. Results from this key data analysis step will drive further experimentation, for example by perturbing aspects of the system being studied and then comparing signalling dynamics with those of the control ...
A cellular model is a mathematical model of aspects of a biological cell, for the purposes of in silico research. Developing such models has been a task of systems biology and mathematical biology .
Many biological circuits produce complex outputs by exploiting one or more feedback loops. In a sequence of biochemical events, feedback would refer to a downstream element in the sequence (B in the adjacent image) affecting some upstream component (A in the adjacent image) to affect its own production or activation (output) in the future.
The Novak–Tyson model is a mathematical model of cell cycle progression that predicts that irreversible transitions entering and exiting mitosis are driven by hysteresis. The model has three basic predictions that should hold true in cycling oocyte extracts whose cell cycle progression is dependent on hysteresis: [26]
The mitosis process in the cells of eukaryotic organisms follows a similar pattern, but with variations in three main details. "Closed" and "open" mitosis can be distinguished on the basis of nuclear envelope remaining intact or breaking down. An intermediate form with partial degradation of the nuclear envelope is called "semiopen" mitosis.
The Novak-Tyson model shows that the differential equations modelling the cyclin-B/CDK1-cdc25-Wee1-Myt1 feedback loop admit two stable equilibria over a range of cyclin-B concentrations. [9] Experimentally, bistability has been validated by blocking endogenous cyclin B1 synthesis and titrating interphase and M-phase cells with varying ...
Cell division in prokaryotes (binary fission) and eukaryotes (mitosis and meiosis). The thick lines are chromosomes, and the thin blue lines are fibers pulling on the chromosomes and pushing the ends of the cell apart. The cell cycle in eukaryotes: I = Interphase, M = Mitosis, G 0 = Gap 0, G 1 = Gap 1, G 2 = Gap 2, S = Synthesis, G 3 = Gap 3.
Mitosis divides the chromosomes in a cell nucleus.. During mitosis chromosome segregation occurs routinely as a step in cell division (see mitosis diagram). As indicated in the mitosis diagram, mitosis is preceded by a round of DNA replication, so that each chromosome forms two copies called chromatids.