enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Radiation pressure - Wikipedia

    en.wikipedia.org/wiki/Radiation_pressure

    However, because black-body radiation increases rapidly with temperature (as the fourth power of temperature, given by the Stefan–Boltzmann law), radiation pressure due to the temperature of a very hot object (or due to incoming black-body radiation from similarly hot surroundings) can become significant. This is important in stellar interiors.

  3. Sonoluminescence - Wikipedia

    en.wikipedia.org/wiki/Sonoluminescence

    The light and heat produced by the bubble may have no direct significance, as it is the shockwave produced by the rapidly collapsing bubble which these shrimp use to stun or kill prey. However, it is the first known instance of an animal producing light by this effect and was whimsically dubbed "shrimpoluminescence" upon its discovery in 2001. [27]

  4. Biophoton - Wikipedia

    en.wikipedia.org/wiki/Biophoton

    This low level of light has a much weaker intensity than the visible light produced by bioluminescence, but biophotons are detectable above the background of thermal radiation that is emitted by tissues at their normal temperature. [2]

  5. Photon gas - Wikipedia

    en.wikipedia.org/wiki/Photon_gas

    The thermodynamics of a black-body photon gas may be derived using quantum statistical mechanical arguments, with the radiation field being in equilibrium with the atoms in the wall. The derivation yields the spectral energy density u, which is the energy of the radiation field per unit volume per unit frequency interval, given by: [3]

  6. Black-body radiation - Wikipedia

    en.wikipedia.org/wiki/Black-body_radiation

    A consequence of Wien's displacement law is that the wavelength at which the intensity per unit wavelength of the radiation produced by a black body has a local maximum or peak, , is a function only of the temperature: =, where the constant b, known as Wien's displacement constant, is equal to + 2.897 771 955 × 10 −3 m K. [31]

  7. Planck's law - Wikipedia

    en.wikipedia.org/wiki/Planck's_law

    According to Planck's distribution law, the spectral energy density (energy per unit volume per unit frequency) at given temperature is given by: [4] [5] (,) = ⁡ alternatively, the law can be expressed for the spectral radiance of a body for frequency ν at absolute temperature T given as: [6] [7] [8] (,) = ⁡ where k B is the Boltzmann ...

  8. Light - Wikipedia

    en.wikipedia.org/wiki/Light

    There are many sources of light. A body at a given temperature emits a characteristic spectrum of black-body radiation. A simple thermal source is sunlight, the radiation emitted by the chromosphere of the Sun at around 6,000 K (5,730 °C; 10,340 °F).

  9. Radiation - Wikipedia

    en.wikipedia.org/wiki/Radiation

    Light, or visible light, is a very narrow range of electromagnetic radiation of a wavelength that is visible to the human eye, or 380–750 nm which equates to a frequency range of 790 to 400 THz respectively. [4] More broadly, physicists use the term "light" to mean electromagnetic radiation of all wavelengths, whether visible or not.