enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Additive inverse - Wikipedia

    en.wikipedia.org/wiki/Additive_inverse

    In a vector space, the additive inverse −v (often called the opposite vector of v) has the same magnitude as v and but the opposite direction. [11] In modular arithmetic, the modular additive inverse of x is the number a such that a + x ≡ 0 (mod n) and always exists. For example, the inverse of 3 modulo 11 is 8, as 3 + 8 ≡ 0 (mod 11). [12]

  3. Inverse function theorem - Wikipedia

    en.wikipedia.org/wiki/Inverse_function_theorem

    For functions of more than one variable, the theorem states that if is a continuously differentiable function from an open subset of into , and the derivative ′ is invertible at a point a (that is, the determinant of the Jacobian matrix of f at a is non-zero), then there exist neighborhoods of in and of = such that () and : is bijective. [1]

  4. Inverse function - Wikipedia

    en.wikipedia.org/wiki/Inverse_function

    However, the sine is one-to-one on the interval [− ⁠ π / 2 ⁠, ⁠ π / 2 ⁠], and the corresponding partial inverse is called the arcsine. This is considered the principal branch of the inverse sine, so the principal value of the inverse sine is always between − ⁠ π / 2 ⁠ and ⁠ π / 2 ⁠ .

  5. Transitive relation - Wikipedia

    en.wikipedia.org/wiki/Transitive_relation

    The transitive extension of R 1 would be denoted by R 2, and continuing in this way, in general, the transitive extension of R i would be R i + 1. The transitive closure of R, denoted by R* or R ∞ is the set union of R, R 1, R 2, ... . [8] The transitive closure of a relation is a transitive relation. [8]

  6. Inverse function rule - Wikipedia

    en.wikipedia.org/wiki/Inverse_function_rule

    This is only useful if the integral exists. In particular we need ′ to be non-zero across the range of integration. It follows that a function that has a continuous derivative has an inverse in a neighbourhood of every point where the derivative is non-zero. This need not be true if the derivative is not continuous.

  7. Orthogonal matrix - Wikipedia

    en.wikipedia.org/wiki/Orthogonal_matrix

    This leads to the equivalent characterization: a matrix Q is orthogonal if its transpose is equal to its inverse: =, where Q −1 is the inverse of Q. An orthogonal matrix Q is necessarily invertible (with inverse Q −1 = Q T ), unitary ( Q −1 = Q ∗ ), where Q ∗ is the Hermitian adjoint ( conjugate transpose ) of Q , and therefore normal ...

  8. −1 - Wikipedia

    en.wikipedia.org/wiki/%E2%88%921

    In mathematics, −1 (negative one or minus one) is the additive inverse of 1, that is, the number that when added to 1 gives the additive identity element, 0. It is the negative integer greater than negative two (−2) and less than 0 .

  9. Inverse element - Wikipedia

    en.wikipedia.org/wiki/Inverse_element

    In mathematics, the concept of an inverse element generalises the concepts of opposite (−x) and reciprocal (1/x) of numbers.. Given an operation denoted here ∗, and an identity element denoted e, if x ∗ y = e, one says that x is a left inverse of y, and that y is a right inverse of x.