Search results
Results from the WOW.Com Content Network
Given a function: from a set X (the domain) to a set Y (the codomain), the graph of the function is the set [4] = {(, ()):}, which is a subset of the Cartesian product.In the definition of a function in terms of set theory, it is common to identify a function with its graph, although, formally, a function is formed by the triple consisting of its domain, its codomain and its graph.
Any exponential function can be written as the self-composition (()) for infinitely many possible choices of .In particular, for every in the open interval (,) and for every continuous strictly increasing function from [,] onto [,], there is an extension of this function to a continuous strictly increasing function on the real numbers such that (()) = . [4]
For every real number r and every function f, the function : () has the same domain as f (or is everywhere defined if r = 0). If f and g are two functions of respective domains X and Y such that X∩Y contains an open subset of , then +: () + and : () are functions that have a domain containing X∩Y.
The function f is injective if and only if each horizontal line intersects the graph at most once. In this case the graph is said to pass the horizontal line test. If any horizontal line intersects the graph more than once, the function fails the horizontal line test and is not injective. [2]
Graph of the real-valued square root function, f(x) = √ x, whose domain consists of all nonnegative real numbers. In mathematics, the domain of a function is the set of inputs accepted by the function. It is sometimes denoted by or , where f is the function. In layman's terms, the domain of a function can generally be thought of as ...
For example, for Newton's method as applied to a function f to oscillate between 0 and 1, it is only necessary that the tangent line to f at 0 intersects the x-axis at 1 and that the tangent line to f at 1 intersects the x-axis at 0. [19] This is the case, for example, if f(x) = x 3 − 2x + 2.
Domain coloring plot of the function f(x) = (x 2 − 1)(x − 2 − i) 2 / x 2 + 2 + 2i , using the structured color function described below. In complex analysis, domain coloring or a color wheel graph is a technique for visualizing complex functions by assigning a color to each point of the complex plane. By assigning points on the ...
A critical point of a function of a single real variable, f (x), is a value x 0 in the domain of f where f is not differentiable or its derivative is 0 (i.e. ′ =). [2] A critical value is the image under f of a critical point.