Search results
Results from the WOW.Com Content Network
The hydride reacts with the weak Bronsted acid releasing H 2. Hydrides such as calcium hydride are used as desiccants, i.e. drying agents, to remove trace water from organic solvents. The hydride reacts with water forming hydrogen and hydroxide salt. The dry solvent can then be distilled or vacuum transferred from the "solvent pot".
A metal hydride can be a thermodynamically a weak acid and a weak H − donor; it could also be strong in one category but not the other or strong in both. The H − strength of a hydride also known as its hydride donor ability or hydricity corresponds to the hydride's Lewis base strength. Not all hydrides are powerful Lewis bases.
According to the patent application [5] the reactor design has some notable characteristics, that sets it apart from other reactor designs. It uses uranium hydride (UH 3) "low-enriched" to 5% uranium-235—the remainder is uranium-238—as the nuclear fuel, rather than the usual metallic uranium or uranium dioxide that composes the fuel rods of contemporary light-water reactors.
Potassium hydride is produced by direct combination of the metal and hydrogen at temperatures between 200 and 350 °C: 2 K + H 2 → 2 KH. This reaction was discovered by Humphry Davy soon after his 1807 discovery of potassium, when he noted that the metal would vaporize in a current of hydrogen when heated just below its boiling point. [4]: p.25
In lithium aluminium hydride, the [AlH 4] − anion carries hydridic centers firmly attached to the Al(III). Although hydrides can be formed with almost all main-group elements, the number and combination of possible compounds varies widely; for example, more than 100 binary borane hydrides are known, but only one binary aluminium hydride. [16]
Ionic hydrogenation refers to hydrogenation achieved by the addition of a hydride to substrate that has been activated by an electrophile. Some ionic hydrogenations entail addition of H 2 to the substrate and some entail replacement of a heteroatom with hydride. [1] Traditionally, the method was developed for acid-induced reductions with ...
This alkali metal hydride is a colorless solid, although commercial samples are grey. Characteristic of a salt-like (ionic) hydride, it has a high melting point, and it is not soluble but reactive with all protic organic solvents. It is soluble and nonreactive with certain molten salts such as lithium fluoride, lithium borohydride, and sodium ...
Aluminium hydride reduces acetals to half protected diols. [1] Acetal reduction using aluminium hydride. Aluminium hydride reduces epoxide to the corresponding alcohol: [1] Epoxide reduction using aluminium hydride. The allylic rearrangement reaction carried out using aluminium hydride is a S N 2 reaction, and it is not sterically demanding: [1]