Search results
Results from the WOW.Com Content Network
In an aqueous solution the hydrogen ions (H +) and hydroxide ions (OH −) are in Arrhenius balance ([H +] [OH −] = K w = 1 x 10 −14 at 298 K). Acids and bases are aqueous solutions, as part of their Arrhenius definitions. [1] An example of an Arrhenius acid is hydrogen chloride (HCl) because of its dissociation of the hydrogen ion when ...
The concentration of hydrogen ions and pH are inversely proportional; in an aqueous solution, an increased concentration of hydrogen ions yields a low pH, and subsequently, an acidic product. By definition, an acid is an ion or molecule that can donate a proton, and when introduced to a solution it will react with water molecules (H 2 O) to ...
In 1884, Svante Arrhenius proposed that a base is a substance which dissociates in aqueous solution to form hydroxide ions OH −. These ions can react with hydrogen ions (H + according to Arrhenius) from the dissociation of acids to form water in an acid–base reaction. A base was therefore a metal hydroxide such as NaOH or Ca(OH) 2.
The reaction is consistent with the Brønsted–Lowry definition because in reality the hydrogen ion exists as the hydronium ion, so that the neutralization reaction may be written as H 3 O + + OH − → H 2 O + H 2 O. When a strong acid is neutralized by a strong base there are no excess hydrogen ions left in the solution.
Weak bases and weak acids are generally weak electrolytes. In an aqueous solution there will be some CH 3 COOH and some CH 3 COO − and H +. A strong electrolyte is a solute that exists in solution completely or nearly completely as ions. Again, the strength of an electrolyte is defined as the percentage of solute that is ions, rather than ...
In chemistry, an acid–base reaction is a chemical reaction that occurs between an acid and a base.It can be used to determine pH via titration.Several theoretical frameworks provide alternative conceptions of the reaction mechanisms and their application in solving related problems; these are called the acid–base theories, for example, Brønsted–Lowry acid–base theory.
Bases are proton acceptors; a base will receive a hydrogen ion from water, H 2 O, and the remaining H + concentration in the solution determines pH. A weak base will have a higher H + concentration than a stronger base because it is less completely protonated than a stronger base and, therefore, more hydrogen ions remain in its solution.
Both lower the kinetic barrier and speed up the attainment of chemical equilibrium. In acid catalysis and base catalysis, a chemical reaction is catalyzed by an acid or a base. By Brønsted–Lowry acid–base theory, the acid is the proton (hydrogen ion, H +) donor and the base is the proton acceptor.