Ads
related to: rational value rational purposes theorem meaning in geometry worksheet gradekutasoftware.com has been visited by 10K+ users in the past month
Search results
Results from the WOW.Com Content Network
The theorem extends to the other trigonometric functions as well. [2] For rational values of θ, the only rational values of the sine or cosine are 0, ±1/2, and ±1; the only rational values of the secant or cosecant are ±1 and ±2; and the only rational values of the tangent or cotangent are 0 and ±1. [3]
Such complete intersections have important applications in geometry and number theory, because they typically admit rational points, an elementary case of which is the Chevalley–Warning theorem. Fano varieties provide an abstract generalization of these basic examples for which rationality questions are often still tractable.
In number theory and algebraic geometry, a rational point of an algebraic variety is a point whose coordinates belong to a given field. If the field is not mentioned, the field of rational numbers is generally understood. If the field is the field of real numbers, a rational point is more commonly called a real point.
In mathematics, "rational" is often used as a noun abbreviating "rational number". The adjective rational sometimes means that the coefficients are rational numbers. For example, a rational point is a point with rational coordinates (i.e., a point whose coordinates are rational numbers); a rational matrix is a matrix of rational numbers; a rational polynomial may be a polynomial with rational ...
A variety X is separably uniruled if there is a variety Y with a dominant separable rational map Y × P 1 – → X which does not factor through the projection to Y. ("Separable" means that the derivative is surjective at some point; this would be automatic for a dominant rational map in characteristic zero.)
By Ostrowski's theorem, every non-trivial absolute value on the rational numbers is equivalent to either the usual absolute value or some -adic absolute value. The rational field is not complete with respect to non-trivial absolute values; with respect to the trivial absolute value, the rational field is a discrete topological space, so complete.
Ads
related to: rational value rational purposes theorem meaning in geometry worksheet gradekutasoftware.com has been visited by 10K+ users in the past month