Search results
Results from the WOW.Com Content Network
The magnetic field (marked B, indicated by red field lines) around wire carrying an electric current (marked I) Compass and wire apparatus showing Ørsted's experiment (video [1]) In electromagnetism , Ørsted's law , also spelled Oersted's law , is the physical law stating that an electric current induces a magnetic field .
When the electric current in a loop of wire changes, the changing current creates a changing magnetic field. A second wire in reach of this magnetic field will experience this change in magnetic field as a change in its coupled magnetic flux, . Therefore, an electromotive force is set up in the second loop called the induced emf or transformer emf.
The magnetic field (B, green) is directed down through the plate. The Lorentz force of the magnetic field on the electrons in the metal induces a sideways current under the magnet. The magnetic field, acting on the sideways moving electrons, creates a Lorentz force opposite to the velocity of the sheet, which acts as a drag force on the sheet.
Lenz's law predicts the direction of many effects in electromagnetism, such as the direction of voltage induced in an inductor or wire loop by a changing current, or the drag force of eddy currents exerted on moving objects in the magnetic field.
The interaction is mediated by the magnetic field each current produces and forms the basis for the international definition of the ampere. [53] The electric motor exploits an important effect of electromagnetism: a current through a magnetic field experiences a force at right angles to both the field and current.
Skin depth, δ, is defined as the depth where the current density is just 1/e (about 37%) of the value at the surface; it depends on the frequency of the current and the electrical and magnetic properties of the conductor. Induction cookers use stranded coils to reduce heating of the coil itself due to skin effect. The AC frequencies used in ...
The largest magnetic fields produced in a laboratory occur in particle accelerators, such as RHIC, inside the collisions of heavy ions, where microscopic fields reach 10 14 T. [50] [51] Magnetars have the strongest known magnetic fields of any naturally occurring object, ranging from 0.1 to 100 GT (10 8 to 10 11 T).
Magnetism is the class of physical attributes that occur through a magnetic field, which allows objects to attract or repel each other.Because both electric currents and magnetic moments of elementary particles give rise to a magnetic field, magnetism is one of two aspects of electromagnetism.