Search results
Results from the WOW.Com Content Network
Fluorine's first ionization energy is third-highest among all elements, behind helium and neon, [16] which complicates the removal of electrons from neutral fluorine atoms. It also has a high electron affinity , second only to chlorine , [ 17 ] and tends to capture an electron to become isoelectronic with the noble gas neon; [ 3 ] it has the ...
Oxygen-13 is an unstable isotope, with 8 protons and 5 neutrons. It has spin 3/2−, and half-life 8.58(5) ms. Its atomic mass is 13.024 815 (10) Da. It decays to nitrogen-13 by electron capture, with a decay energy of 17.770(10) MeV. Its parent nuclide is fluorine-14.
Fluorine (9 F) has 19 known isotopes ranging from 13 F to 31 F and two isomers (18m F and 26m F). Only fluorine-19 is stable and naturally occurring in more than trace quantities; therefore, fluorine is a monoisotopic and mononuclidic element. The longest-lived radioisotope is 18 F; it has a half-life of 109.734(8) min. All other fluorine ...
Oxygen is the chemical element with atomic number 8, occurring mostly as 16 O, but also 17 O and 18 O. Oxygen is the third-most common element by mass in the universe (although there are more carbon atoms, each carbon atom is lighter). It is highly electronegative and non-metallic, usually diatomic, gas down to very low temperatures.
The only stable nuclides having an odd number of protons and an odd number of neutrons are hydrogen-2, lithium-6, boron-10, nitrogen-14 and (observationally) tantalum-180m. This is because the mass–energy of such atoms is usually higher than that of their neighbors on the same isobaric chain, so most of them are unstable to beta decay .
Atomicity is the total number of atoms present in a molecule of an element. For example, each molecule of oxygen (O 2) is composed of two oxygen atoms. Therefore, the atomicity of oxygen is 2. [1] In older contexts, atomicity is sometimes equivalent to valency. Some authors also use the term to refer to the maximum number of valencies observed ...
2 Ω) is bombarded with hydrogen ions in either a cyclotron or linear accelerator, producing fluorine-18. This is then synthesized into FDG and injected into a patient. It can also be used to make an extremely heavy version of water when combined with tritium (hydrogen-3): 3 H 2 18 O or T 2 Ω. This compound has a density almost 30% greater ...
Fluorine-18 (18 F, also called radiofluorine) is a fluorine radioisotope which is an important source of positrons. It has a mass of 18.0009380(6) u and its half-life is 109.771(20) minutes. It decays by positron emission 96.7% of the time and electron capture 3.3% of the time. Both modes of decay yield stable oxygen-18.