Search results
Results from the WOW.Com Content Network
Example graph that has a vertex cover comprising 2 vertices (bottom), but none with fewer. In graph theory, a vertex cover (sometimes node cover) of a graph is a set of vertices that includes at least one endpoint of every edge of the graph. In computer science, the problem of finding a minimum vertex cover is a classical optimization problem.
In fluid dynamics, angle of attack (AOA, α, or ) is the angle between a reference line on a body (often the chord line of an airfoil) and the vector representing the relative motion between the body and the fluid through which it is moving. [1] Angle of attack is the angle between the body's reference line and the oncoming flow.
The most prominent examples of covering problems are the set cover problem, which is equivalent to the hitting set problem, and its special cases, the vertex cover problem and the edge cover problem. Covering problems allow the covering primitives to overlap; the process of covering something with non-overlapping primitives is called decomposition.
The complement of a vertex cover in any graph is an independent set, so a minimum vertex cover is complementary to a maximum independent set; finding maximum independent sets is another NP-complete problem. The equivalence between matching and covering articulated in Kőnig's theorem allows minimum vertex covers and maximum independent sets to ...
Recent accidents and incidents have resulted in new flight crew training programs, which in turn have raised interest in AoA in commercial aviation. Awareness of AOA is vitally important as the airplane nears stall." [101] Chesley Sullenberger said AoA indicators might have helped in these two crashes. "It is ironic that most modern aircraft ...
Several features have been discovered through experiments, [16] [17] [18] for example, depending on the phasing of the velocity variations with respect to the AoA, initiation of LEV shedding and the chordwise convection of LEV appear to be different. [18] However, more works are needed to better understand this problem adopting mathematical models.
That is, the complement is a vertex cover, a set of vertices that includes at least one endpoint of each edge, and is minimal in the sense that none of its vertices can be removed while preserving the property that it is a cover. Minimal vertex covers have been studied in statistical mechanics in connection with the hard-sphere lattice gas ...
Given a directed graph G = (V, E), a path cover is a set of directed paths such that every vertex v ∈ V belongs to at least one path. Note that a path cover may include paths of length 0 (a single vertex). [1] Each vertex of the graph is a part of a path, including vertex D, which is a part of a path with length 0.