Search results
Results from the WOW.Com Content Network
The latter standard represents the spectral distribution of global irradiance incident on a 37° tilted surface facing the sun at an air mass of 1.5. The integrated irradiance amounts to 1000 W/m 2 . This standard spectrum is mandated by IEC to evaluate the rating of photovoltaic (PV) solar cells in the absence of optical concentration.
Mathematically, for the spectral power distribution of a radiant exitance or irradiance one may write: =where M(λ) is the spectral irradiance (or exitance) of the light (SI units: W/m 2 = kg·m −1 ·s −3); Φ is the radiant flux of the source (SI unit: watt, W); A is the area over which the radiant flux is integrated (SI unit: square meter, m 2); and λ is the wavelength (SI unit: meter, m).
A solar simulator’s spectral match is computed by comparing its output spectrum to the integrated irradiance in several wavelength intervals. The reference percentage of total irradiance is shown below in Table 2 for the standard terrestrial spectra of AM1.5G and AM1.5D, and the extraterrestrial spectrum, AM0. Below is a plot of these two ...
The plot for vapor is a transformation of data Synthetic spectrum for gas mixture ' Pure H 2 O ' (296K, 1 atm) retrieved from Hitran on the Web Information System. [6] Liquid water absorption spectrum across a wide wavelength range [missing source] The absorption of electromagnetic radiation by water depends on the state of the water.
The field of spectroradiometry concerns itself with the measurement of absolute radiometric quantities in narrow wavelength intervals. [1] It is useful to sample the spectrum with narrow bandwidth and wavelength increments because many sources have line structures [2] Most often in spectroradiometry, spectral irradiance is the desired measurement.
The specific (radiative) intensity is a radiometric concept. Related to it is the intensity in terms of the photon distribution function, [5] [24] which uses the metaphor [25] of a particle of light that traces the path of a ray. The idea common to the photon and the radiometric concepts is that the energy travels along rays.
Radiant intensity is used to characterize the emission of radiation by an antenna: [2], = (), where E e is the irradiance of the antenna;; r is the distance from the antenna.; Unlike power density, radiant intensity does not depend on distance: because radiant intensity is defined as the power through a solid angle, the decreasing power density over distance due to the inverse-square law is ...
Solar irradiance spectrum above atmosphere and at surface. The overall intensity of solar radiation is like that of a black body radiator of the same size at about 5,800 K. [1] As it passes through the atmosphere, sunlight is attenuated by scattering and absorption; the more atmosphere through which it passes, the greater the attenuation.