enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Sum of squares function - Wikipedia

    en.wikipedia.org/wiki/Sum_of_squares_function

    The number of ways to write a natural number as sum of two squares is given by r 2 (n).It is given explicitly by = (() ())where d 1 (n) is the number of divisors of n which are congruent to 1 modulo 4 and d 3 (n) is the number of divisors of n which are congruent to 3 modulo 4.

  3. Difference of two squares - Wikipedia

    en.wikipedia.org/wiki/Difference_of_two_squares

    The formula for the difference of two squares can be used for factoring polynomials that contain the square of a first quantity minus the square of a second quantity. For example, the polynomial can be factored as follows: = (+) = (+) (+) As a second example, the first two terms of + can be factored as (+) (), so we have:

  4. Squared triangular number - Wikipedia

    en.wikipedia.org/wiki/Squared_triangular_number

    A square whose side length is a triangular number can be partitioned into squares and half-squares whose areas add to cubes. From Gulley (2010).The n th coloured region shows n squares of dimension n by n (the rectangle is 1 evenly divided square), hence the area of the n th region is n times n × n.

  5. Centered square number - Wikipedia

    en.wikipedia.org/wiki/Centered_square_number

    All centered square numbers and their divisors have a remainder of 1 when divided by 4. Hence all centered square numbers and their divisors end with digit 1 or 5 in base 6, 8, and 12. Every centered square number except 1 is the hypotenuse of a Pythagorean triple (3-4-5, 5-12-13, 7-24-25, ...). This is exactly the sequence of Pythagorean ...

  6. Sylvester's sequence - Wikipedia

    en.wikipedia.org/wiki/Sylvester's_sequence

    Each row of k squares of side length 1/k has total area 1/k, and all the squares together exactly cover a larger square with area 1. Squares with side lengths 1/1807 or smaller are too small to see in the figure and are not shown. In number theory, Sylvester's sequence is an integer sequence in which each term is the product of the previous ...

  7. Square number - Wikipedia

    en.wikipedia.org/wiki/Square_number

    Squares of even numbers are even, and are divisible by 4, since (2n) 2 = 4n 2. Squares of odd numbers are odd, and are congruent to 1 modulo 8, since (2n + 1) 2 = 4n(n + 1) + 1, and n(n + 1) is always even. In other words, all odd square numbers have a remainder of 1 when divided by 8. Every odd perfect square is a centered octagonal number ...

  8. Congruum - Wikipedia

    en.wikipedia.org/wiki/Congruum

    Additionally, multiplying a congruum by a square number produces another congruum, whose progression of squares is multiplied by the same factor. All solutions arise in one of these two ways. [ 1 ] For instance, the congruum 96 can be constructed by these formulas with m = 3 {\displaystyle m=3} and n = 1 {\displaystyle n=1} , while the congruum ...

  9. Sum of two squares theorem - Wikipedia

    en.wikipedia.org/wiki/Sum_of_two_squares_theorem

    Of the primes occurring in this decomposition, 2, 5, and 7, only 7 is congruent to 3 modulo 4. Its exponent in the decomposition, 2, is even. Therefore, the theorem states that it is expressible as the sum of two squares. Indeed, 2450 = 7 2 + 49 2. The prime decomposition of the number 3430 is 2 · 5 · 7 3. This time, the exponent of 7 in the ...

  1. Related searches sequence of squares in squares formula examples worksheet 2 4 1 banner leak

    formula for two squaressum of two squares
    sequence of triangular numbers