Search results
Results from the WOW.Com Content Network
The absence of fructokinase results in the inability to phosphorylate fructose to fructose-1-phosphate within the cell. As a result, fructose is neither trapped within the cell nor directed toward its metabolism. [11] Free fructose concentrations in the liver increase and fructose is free to leave the cell and enter plasma.
Fru-2,6-P 2 strongly activates glucose breakdown in glycolysis through allosteric modulation (activation) of phosphofructokinase 1 (PFK-1).Elevated expression of Fru-2,6-P 2 levels in the liver allosterically activates phosphofructokinase 1 by increasing the enzyme’s affinity for fructose 6-phosphate, while decreasing its affinity for inhibitory ATP and citrate.
The cells will use glucose for energy as normal, and any glucose not used for energy will enter the polyol pathway. When blood glucose is normal (about 100 mg/dL or 5.5 mmol/L), this interchange causes no problems, as aldose reductase has a low affinity for glucose at normal concentrations .
Glycolysis is the metabolic pathway that converts glucose (C 6 H 12 O 6) into pyruvate and, in most organisms, occurs in the liquid part of cells (the cytosol). The free energy released in this process is used to form the high-energy molecules adenosine triphosphate (ATP) and reduced nicotinamide adenine dinucleotide (NADH). [ 1 ]
Fructose must undergo certain extra steps in order to enter the glycolysis pathway. [2] Enzymes located in certain tissues can add a phosphate group to fructose. [12] This phosphorylation creates fructose-6-phosphate, an intermediate in the glycolysis pathway that can be broken down directly in those tissues. [12]
In pancreatic beta cells, free flowing glucose is required so that the intracellular environment of these cells can accurately gauge the serum glucose levels. All three monosaccharides (glucose, galactose, and fructose) are transported from the intestinal mucosal cell into the portal circulation by GLUT2. Is a high-frequency and low-affinity ...
Glycosylation also plays a role in cell-to-cell adhesion (a mechanism employed by cells of the immune system) via sugar-binding proteins called lectins, which recognize specific carbohydrate moieties. [2] Glycosylation is an important parameter in the optimization of many glycoprotein-based drugs such as monoclonal antibodies. [6]
The location where glycolysis, aerobic or anaerobic, occurs is in the cytosol of the cell. In glycolysis, a six-carbon glucose molecule is split into two three-carbon molecules called pyruvate. These carbon molecules are oxidized into NADH and ATP. For the glucose molecule to oxidize into pyruvate, an input of ATP molecules is required.