Search results
Results from the WOW.Com Content Network
where τ zx is the flux of x-directed momentum in the z-direction, ν is μ/ρ, the momentum diffusivity, z is the distance of transport or diffusion, ρ is the density, and μ is the dynamic viscosity. Newton's law of viscosity is the simplest relationship between the flux of momentum and the velocity gradient.
If no bulk flow occurs in an element of length dx, the rates of diffusion of two ideal gases (of similar molar volume) A and B must be equal and opposite, that is =. The partial pressure of A changes by dP A over the distance dx. Similarly, the partial pressure of B changes dP B. As there is no difference in total pressure across the element ...
Fick's first law relates the diffusive flux to the gradient of the concentration. It postulates that the flux goes from regions of high concentration to regions of low concentration, with a magnitude that is proportional to the concentration gradient (spatial derivative), or in simplistic terms the concept that a solute will move from a region of high concentration to a region of low ...
Rosin used as flux for soldering A flux pen used for electronics rework Multicore solder containing flux Wire freshly coated with solder, held above molten rosin flux. In metallurgy, a flux is a chemical reducing agent, flowing agent, or purifying agent. Fluxes may have more than one function at a time.
The number of molecules of each reactant used up each time a reaction occurs is constant, as is the number of molecules produced of each product. These numbers are referred to as the stoichiometry of the reaction, and the difference between the two (i.e. the overall number of molecules used up or produced) is the net stoichiometry. This means ...
Given a flux according to the electromagnetism definition, the corresponding flux density, if that term is used, refers to its derivative along the surface that was integrated. By the Fundamental theorem of calculus , the corresponding flux density is a flux according to the transport definition.
Without losing generality, consider a steady state, i.e. / =, and an infinite crosswind line source, for which, at = = Assuming that (/) / ¯ /, i.e., the x-transport by mean flow greatly outweighs the eddy flux in that direction, the gradient based diffusion equation for the flux of a stationary medium becomes ¯ = This equation, together with ...
Flux is the net movement of particles across a specified area in a specified period of time. [1] The particles may be ions or molecules, or they may be larger, like insects, muskrats or cars. The units of time can be anything from milliseconds to millennia. Flux is not the same as velocity or speed nor is it the same as density or concentration.