Search results
Results from the WOW.Com Content Network
22256 Ensembl ENSG00000076248 ENSMUSG00000029591 UniProt P13051 P97931 RefSeq (mRNA) NM_080911 NM_003362 NM_001040691 NM_011677 RefSeq (protein) NP_003353 NP_550433 NP_001035781 NP_035807 Location (UCSC) Chr 12: 109.1 – 109.11 Mb Chr 5: 114.27 – 114.28 Mb PubMed search Wikidata View/Edit Human View/Edit Mouse Uracil-DNA glycosylase (also known as UNG or UDG) is an enzyme. Its most ...
5-Fluorouracil (5-FU) is a widely used in the treatment of a range of common cancers that causes DNA damage via two mechanisms. FU is thought to kill cells via the inhibition of thymidylate synthase and also deprive cells of TTP during DNA replication, which leads to the introduction of uracil in DNA causing the fragmentation of newly synthesized DNA.
Uracil DNA glycosylase flips a uracil residue out of the duplex, shown in yellow. DNA glycosylases are responsible for initial recognition of the lesion. They flip the damaged base out of the double helix, as pictured, and cleave the N-glycosidic bond of the damaged base, leaving an AP site. There are two categories of glycosylases ...
Very short patch (VSP) repair is a DNA repair system that removes GT mismatches created by the deamination of 5-methylcytosine to thymine.This system exists because the glycosylases which normally target deaminated bases cannot target thymine (it being one of the regular four bases in DNA).
DNA glycosylases are a family of enzymes involved in base excision repair, classified under EC number EC 3.2.2. Base excision repair is the mechanism by which damaged bases in DNA are removed and replaced.
DNA glycosylases first create abasic sites by recognizing and removing modified bases. Many glycosylase variants exist to deal with the multiple ways a base can be damaged. The most common circumstances are base alkylation, oxidation, and the presence of a uracil in the DNA strand. [4]
Therefore, if there were an organism that used uracil in its DNA, the deamination of cytosine (which undergoes base pairing with guanine) would lead to formation of uracil (which would base pair with adenine) during DNA synthesis. Uracil-DNA glycosylase excises uracil bases from double-stranded DNA. This enzyme would therefore recognize and cut ...
This is the most common single nucleotide mutation. In DNA, this reaction, if detected prior to passage of the replication fork, can be corrected by the enzyme thymine-DNA glycosylase, which removes the thymine base in a G/T mismatch. This leaves an abasic site that is repaired by AP endonucleases and polymerase, as with uracil-DNA glycosylase. [2]