Search results
Results from the WOW.Com Content Network
Magnetic compass adjustment and correction is one of the subjects in the examination curriculum for a shipmaster's certificate of competency. The sources of magnetic deviation vary from compass to compass or vehicle to vehicle. However, they are independent of location, and thus the compass can be calibrated to accommodate them.
CEP is not a good measure of accuracy when this distribution behavior is not met. Munitions may also have larger standard deviation of range errors than the standard deviation of azimuth (deflection) errors, resulting in an elliptical confidence region. Munition samples may not be exactly on target, that is, the mean vector will not be (0,0).
Compass turns are typically performed in simulated or actual failures of the directional gyro or other navigational instruments. A magnetic compass is a simple instrument when the compass is not moving and is on the earth. A magnetic compass installed in an aircraft is subject to compass turning errors during flight.
Any non-linear differentiable function, (,), of two variables, and , can be expanded as + +. If we take the variance on both sides and use the formula [11] for the variance of a linear combination of variables (+) = + + (,), then we obtain | | + | | +, where is the standard deviation of the function , is the standard deviation of , is the standard deviation of and = is the ...
A Flinders bar is a vertical soft iron bar placed in a tube on the fore side of a compass binnacle. The Flinders bar is used to counteract the vertical magnetism inherent within a ship and is usually calibrated as part of the process known as swinging the compass , where deviations caused by this inherent magnetism are negated by the use of ...
For a Type I error, it is shown as α (alpha) and is known as the size of the test and is 1 minus the specificity of the test. This quantity is sometimes referred to as the confidence of the test, or the level of significance (LOS) of the test.
Compass; The formula is always added moving down, and subtracted when moving up. The most complicated part is determining if the values are positive or negative. The True, Magnetic, and Compass values are directions on the compass, they must always be a positive number between 0–360. Variation and Deviation can be positive or negative.
The earliest reference to a similar formula appears to be Armstrong (1985, p. 348), where it is called "adjusted MAPE" and is defined without the absolute values in the denominator. It was later discussed, modified, and re-proposed by Flores (1986).