Search results
Results from the WOW.Com Content Network
A strain energy density function or stored energy density function is a scalar-valued function that relates the strain energy density of a material to the deformation ...
The strain energy in the form of elastic deformation is mostly recoverable in the form of mechanical work. For example, the heat of combustion of cyclopropane (696 kJ/mol) is higher than that of propane (657 kJ/mol) for each additional CH 2 unit. Compounds with unusually large strain energy include tetrahedranes, propellanes, cubane-type ...
The primary, and likely most widely employed, strain-energy function formulation is the Mooney-Rivlin model, which reduces to the widely known neo-Hookean model. The strain energy density function for an incompressible Mooney—Rivlin material is = + (); =
In continuum mechanics, a Mooney–Rivlin solid [1] [2] is a hyperelastic material model where the strain energy density function is a linear combination of two invariants of the left Cauchy–Green deformation tensor.
The model is based on Ronald Rivlin's observation that the elastic properties of rubber may be described using a strain energy density function which is a power series in the strain invariants,, of the Cauchy-Green deformation tensors. [2]
The J-integral represents a way to calculate the strain energy release rate, or work per unit fracture surface area, in a material. [1] The theoretical concept of J-integral was developed in 1967 by G. P. Cherepanov [2] and independently in 1968 by James R. Rice, [3] who showed that an energetic contour path integral (called J) was independent of the path around a crack.
Strain energy density consists of two components - volumetric or dialational and distortional. Volumetric component is responsible for change in volume without any change in shape. Distortional component is responsible for shear deformation or change in shape.
For rubber and biological materials, more sophisticated models are necessary. Such materials may exhibit a non-linear stress–strain behaviour at modest strains, or are elastic up to huge strains. These complex non-linear stress–strain behaviours need to be accommodated by specifically tailored strain-energy density functions.