enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Strain energy density function - Wikipedia

    en.wikipedia.org/wiki/Strain_energy_density_function

    A strain energy density function or stored energy density function is a scalar-valued function that relates the strain energy density of a material to the deformation ...

  3. Third medium contact method - Wikipedia

    en.wikipedia.org/wiki/Third_medium_contact_method

    While the neo-Hookean material model can be stable for contact without sliding, sliding often leads to instability. To address this, regularization techniques are applied to the strain energy density function. Regularization is typically achieved by adding a regularization term to the strain energy density function of the material model.

  4. Mooney–Rivlin solid - Wikipedia

    en.wikipedia.org/wiki/Mooney–Rivlin_solid

    In continuum mechanics, a Mooney–Rivlin solid [1] [2] is a hyperelastic material model where the strain energy density function is a linear combination of two invariants of the left Cauchy–Green deformation tensor.

  5. Neo-Hookean solid - Wikipedia

    en.wikipedia.org/wiki/Neo-Hookean_solid

    The primary, and likely most widely employed, strain-energy function formulation is the Mooney-Rivlin model, which reduces to the widely known neo-Hookean model. The strain energy density function for an incompressible Mooney—Rivlin material is = + (); =

  6. Yeoh hyperelastic model - Wikipedia

    en.wikipedia.org/wiki/Yeoh_hyperelastic_model

    The model is based on Ronald Rivlin's observation that the elastic properties of rubber may be described using a strain energy density function which is a power series in the strain invariants,, of the Cauchy-Green deformation tensors. [2]

  7. Finite strain theory - Wikipedia

    en.wikipedia.org/wiki/Finite_strain_theory

    The concept of strain is used to evaluate how much a given displacement differs locally from a rigid body displacement. [1] [8] [9] One of such strains for large deformations is the Lagrangian finite strain tensor, also called the Green-Lagrangian strain tensor or Green–St-Venant strain tensor, defined as

  8. Critical plane analysis - Wikipedia

    en.wikipedia.org/wiki/Critical_plane_analysis

    The chief advantage of critical plane analysis over earlier approaches like Sines rule, or like correlation against maximum principal stress or strain energy density, is the ability to account for damage on specific material planes.

  9. Hyperelastic material - Wikipedia

    en.wikipedia.org/wiki/Hyperelastic_material

    A hyperelastic or Green elastic material [1] is a type of constitutive model for ideally elastic material for which the stress–strain relationship derives from a strain energy density function. The hyperelastic material is a special case of a Cauchy elastic material.