enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. n-sphere - Wikipedia

    en.wikipedia.org/wiki/N-sphere

    The above ⁠ ⁠-sphere exists in ⁠ (+) ⁠-dimensional Euclidean space and is an example of an ⁠ ⁠-manifold. The volume form ⁠ ω {\displaystyle \omega } ⁠ of an ⁠ n {\displaystyle n} ⁠ -sphere of radius ⁠ r {\displaystyle r} ⁠ is given by

  3. Lists of uniform tilings on the sphere, plane, and hyperbolic ...

    en.wikipedia.org/wiki/Lists_of_uniform_tilings...

    There are 4 symmetry classes of reflection on the sphere, and three in the Euclidean plane. A few of the infinitely many such patterns in the hyperbolic plane are also listed. (Increasing any of the numbers defining a hyperbolic or Euclidean tiling makes another hyperbolic tiling.) Point groups:

  4. List of coordinate charts - Wikipedia

    en.wikipedia.org/wiki/List_of_coordinate_charts

    Surface Class Surface Charts n-spheres: n-sphere S n: Hopf chart. Hyperspherical coordinates. Sphere S 2: Spherical coordinates. Stereographic chart Central projection chart Axial projection chart Mercator chart. 3-sphere S 3: Polar chart. Stereographic chart Mercator chart. Euclidean spaces: n-dimensional Euclidean space E n: Cartesian chart ...

  5. List of regular polytopes - Wikipedia

    en.wikipedia.org/wiki/List_of_regular_polytopes

    It can be realized non-degenerately in some non-Euclidean spaces, such as on the surface of a sphere or torus. For example, digon can be realised non-degenerately as a spherical lune . A monogon {1} could also be realised on the sphere as a single point with a great circle through it. [ 7 ]

  6. Euler characteristic - Wikipedia

    en.wikipedia.org/wiki/Euler_characteristic

    hence has Betti number 1 in dimensions 0 and n, and all other Betti numbers are 0. Its Euler characteristic is then χ = 1 + (−1) n ; that is, either 0 if n is odd, or 2 if n is even. The n dimensional real projective space is the quotient of the n sphere by the antipodal map. It follows that its Euler characteristic is exactly half that of ...

  7. Conformal geometry - Wikipedia

    en.wikipedia.org/wiki/Conformal_geometry

    The n-dimensional model is the celestial sphere of the (n + 2)-dimensional Lorentzian space R n+1,1. Here the model is a Klein geometry : a homogeneous space G / H where G = SO( n + 1, 1) acting on the ( n + 2) -dimensional Lorentzian space R n +1,1 and H is the isotropy group of a fixed null ray in the light cone .

  8. Homotopy groups of spheres - Wikipedia

    en.wikipedia.org/wiki/Homotopy_groups_of_spheres

    The n-dimensional unit sphere — called the n-sphere for brevity, and denoted as S n — generalizes the familiar circle (S 1) and the ordinary sphere (S 2). The n-sphere may be defined geometrically as the set of points in a Euclidean space of dimension n + 1 located at a unit distance from the origin.

  9. Kissing number - Wikipedia

    en.wikipedia.org/wiki/Kissing_number

    Other names for kissing number that have been used are Newton number (after the originator of the problem), and contact number. In general, the kissing number problem seeks the maximum possible kissing number for n-dimensional spheres in (n + 1)-dimensional Euclidean space. Ordinary spheres correspond to two-dimensional closed surfaces in three ...