Search results
Results from the WOW.Com Content Network
The concept was first introduced by S. Pancharatnam [1] as geometric phase and later elaborately explained and popularized by Michael Berry in a paper published in 1984 [2] emphasizing how geometric phases provide a powerful unifying concept in several branches of classical and quantum physics.
There are several important aspects of this generalization of Berry's phase: 1) Instead of the parameter space for the original Berry phase, this Ning-Haken generalization is defined in phase space; 2) Instead of the adiabatic evolution in quantum mechanical system, the evolution of the system in phase space needs not to be adiabatic.
The Hannay angle is defined in the context of action-angle coordinates.In an initially time-invariant system, an action variable is a constant. After introducing a periodic perturbation (), the action variable becomes an adiabatic invariant, and the Hannay angle for its corresponding angle variable can be calculated according to the path integral that represents an evolution in which the ...
1.2 Slight generalization of the Gaussian ... 2.1.1.3 Construction of the orthogonal ... 4 Integrals that can be approximated by the method of stationary phase.
It is the most widely accepted mechanism for pseudorotation and most commonly occurs in trigonal bipyramidal molecules such as PF 5, though it can also occur in molecules with a square pyramidal geometry. [1] The Berry mechanism is named after R. Stephen Berry, who first described this mechanism in 1960. [2] [3]
The sum over r covers other degrees of freedom specific for the field, such as polarization or spin; it usually comes out as a sum from 1 to 2 or from 1 to 3. E p is the relativistic energy for a momentum p quantum of the field, = m 2 c 4 + c 2 p 2 {\textstyle ={\sqrt {m^{2}c^{4}+c^{2}\mathbf {p} ^{2}}}} when the rest mass is m .
Symplectic manifolds arise from classical mechanics; in particular, they are a generalization of the phase space of a closed system. [1] In the same way the Hamilton equations allow one to derive the time evolution of a system from a set of differential equations, the symplectic form should allow one to obtain a vector field describing the flow of the system from the differential of a ...
More generally, one can also consider integrands that have a known power-law singularity at x=0, for some real number >, leading to integrals of the form: + (). In this case, the weights are given [2] in terms of the generalized Laguerre polynomials: