Search results
Results from the WOW.Com Content Network
In reinforcement learning (RL), a model-free algorithm is an algorithm which does not estimate the transition probability distribution (and the reward function) associated with the Markov decision process (MDP), [1] which, in RL, represents the problem to be solved. The transition probability distribution (or transition model) and the reward ...
One of the popular examples in computer science is the mathematical models of various machines, an example is the deterministic finite automaton (DFA) which is defined as an abstract mathematical concept, but due to the deterministic nature of a DFA, it is implementable in hardware and software for solving various specific problems. For example ...
The theory of Occam learning is a formal and mathematical justification for this principle. It was first shown by Blumer, et al. [1] that Occam learning implies PAC learning, which is the standard model of learning in computational learning theory. In other words, parsimony (of the output hypothesis) implies predictive power.
Q-learning is a model-free reinforcement learning algorithm that teaches an agent to assign values to each action it might take, conditioned on the agent being in a particular state. It does not require a model of the environment (hence "model-free"), and it can handle problems with stochastic transitions and rewards without requiring adaptations.
Given a training set consisting of examples = (,, ′), where , ′ are observations of a world state from two consecutive time steps , ′ and is an action instance observed in time step , the goal of action model learning in general is to construct an action model , , where is a description of domain dynamics in action description formalism like STRIPS, ADL or PDDL and is a probability ...
The difference between learning automata and Q-learning is that the former technique omits the memory of Q-values, but updates the action probability directly to find the learning result. Learning automata is a learning scheme with a rigorous proof of convergence. [21] In learning automata theory, a stochastic automaton consists of:
Pronounced "A-star". A graph traversal and pathfinding algorithm which is used in many fields of computer science due to its completeness, optimality, and optimal efficiency. abductive logic programming (ALP) A high-level knowledge-representation framework that can be used to solve problems declaratively based on abductive reasoning. It extends normal logic programming by allowing some ...
The bus engine replacement model developed in the seminal paper Rust (1987) is one of the first dynamic stochastic models of discrete choice estimated using real data, and continues to serve as classical example of the problems of this type. [4]