Search results
Results from the WOW.Com Content Network
The size of household microwave ovens can vary, but usually have an internal volume of around 20 liters (1,200 cu in; 0.71 cu ft), and external dimensions of approximately 45–60 cm (1 ft 6 in – 2 ft 0 in) wide, 35–40 cm (1 ft 2 in – 1 ft 4 in) deep and 25–35 cm (9.8 in – 1 ft 1.8 in) tall. [29]
Commercial implementations are in the 2.3 GHz, 2.5 GHz, 3.5 GHz and 5.8 GHz ranges. Mobile Broadband Wireless Access (MBWA) protocols based on standards specifications such as IEEE 802.20 or ATIS/ANSI HC-SDMA (such as iBurst ) operate between 1.6 and 2.3 GHz to give mobility and in-building penetration characteristics similar to mobile phones ...
Microwave is a term used to identify electromagnetic waves above 10 3 megahertz (1 Gigahertz) up to 300 Gigahertz because of the short physical wavelengths of these frequencies. Short wavelength energy offers distinct advantages in many applications.
Microwave ovens operate by emitting electromagnetic waves, particularly microwaves, which interact with water molecules in the food. These microwaves cause the water molecules to oscillate rapidly ...
10 3: kilo-(kW) 1–3 × 10 3 W tech: heat output of a domestic electric kettle: 1.1 × 10 3 W tech: power of a microwave oven: 1.366 × 10 3 W astro: power per square meter received from the Sun at the Earth's orbit: 1.5 × 10 3 W tech: legal limit of power output of an amateur radio station in the United States up to 2 × 10 3 W
LC circuit equivalent for microwave resonant cavity. Microwave resonant cavities can be represented and thought of as simple LC circuits, see Montgomery et al pages 207-239. [15] For a microwave cavity, the stored electric energy is equal to the stored magnetic energy at resonance as is the case for a resonant LC circuit.
A microwave oven uses dielectric heating to cook food.. Dielectric heating, also known as electronic heating, radio frequency heating, and high-frequency heating, is the process in which a radio frequency (RF) alternating electric field, or radio wave or microwave electromagnetic radiation heats a dielectric material.
Applied in a phase transfer reaction a water phase reaches a temperature of 100 °C while a chloroform phase would retain a temperature of 50 °C, providing the extraction as well of the reactants from one phase to the other. Microwave chemistry is particularly effective in dry media reactions.