enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Honeycomb (geometry) - Wikipedia

    en.wikipedia.org/wiki/Honeycomb_(geometry)

    A 3-dimensional uniform honeycomb is a honeycomb in 3-space composed of uniform polyhedral cells, and having all vertices the same (i.e., the group of [isometries of 3-space that preserve the tiling] is transitive on vertices). There are 28 convex examples in Euclidean 3-space, [1] also called the Archimedean honeycombs.

  3. Order-3-7 hexagonal honeycomb - Wikipedia

    en.wikipedia.org/wiki/Order-3-7_hexagonal_honeycomb

    In the geometry of hyperbolic 3-space, the order-3-infinite hexagonal honeycomb or (6,3,∞ honeycomb) is a regular space-filling tessellation (or honeycomb) with Schläfli symbol {6,3,∞}. It has infinitely many hexagonal tiling {6,3} around each edge.

  4. Hexagonal tiling honeycomb - Wikipedia

    en.wikipedia.org/wiki/Hexagonal_tiling_honeycomb

    The runcicantellated hexagonal tiling honeycomb or runcitruncated order-6 tetrahedral honeycomb, t 0,2,3 {6,3,3}, has truncated tetrahedron, hexagonal prism, and rhombitrihexagonal tiling cells, with an isosceles-trapezoidal pyramid vertex figure.

  5. Order-7-3 triangular honeycomb - Wikipedia

    en.wikipedia.org/wiki/Order-7-3_triangular_honeycomb

    In the geometry of hyperbolic 3-space, the order-7-3 hexagonal honeycomb (or 6,7,3 honeycomb) a regular space-filling tessellation (or honeycomb). Each infinite cell consists of an order-6 hexagonal tiling whose vertices lie on a 2-hypercycle , each of which has a limiting circle on the ideal sphere.

  6. Alternated hexagonal tiling honeycomb - Wikipedia

    en.wikipedia.org/wiki/Alternated_hexagonal...

    In three-dimensional hyperbolic geometry, the alternated hexagonal tiling honeycomb, h{6,3,3}, or , is a semiregular tessellation with tetrahedron and triangular tiling cells arranged in an octahedron vertex figure. It is named after its construction, as an alteration of a hexagonal tiling honeycomb.

  7. Order-3-7 heptagonal honeycomb - Wikipedia

    en.wikipedia.org/wiki/Order-3-7_heptagonal_honeycomb

    In the geometry of hyperbolic 3-space, the order-3-8 octagonal honeycomb is a regular space-filling tessellation (or honeycomb) with Schläfli symbol {8,3,8}. It has eight octagonal tilings , {8,3}, around each edge.

  8. Order-6 dodecahedral honeycomb - Wikipedia

    en.wikipedia.org/wiki/Order-6_dodecahedral_honeycomb

    The cantitruncated order-6 dodecahedral honeycomb, t 0,1,2 {5,3,6} has truncated icosidodecahedron, hexagonal tiling, and hexagonal prism facets, with a mirrored sphenoid vertex figure. Runcinated order-6 dodecahedral honeycomb

  9. Convex uniform honeycomb - Wikipedia

    en.wikipedia.org/wiki/Convex_uniform_honeycomb

    The alternated cubic honeycomb is one of 28 space-filling uniform tessellations in Euclidean 3-space, composed of alternating yellow tetrahedra and red octahedra.. In geometry, a convex uniform honeycomb is a uniform tessellation which fills three-dimensional Euclidean space with non-overlapping convex uniform polyhedral cells.