enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Sobolev inequality - Wikipedia

    en.wikipedia.org/wiki/Sobolev_inequality

    In mathematics, there is in mathematical analysis a class of Sobolev inequalities, relating norms including those of Sobolev spaces.These are used to prove the Sobolev embedding theorem, giving inclusions between certain Sobolev spaces, and the Rellich–Kondrachov theorem showing that under slightly stronger conditions some Sobolev spaces are compactly embedded in others.

  3. Sobolev mapping - Wikipedia

    en.wikipedia.org/wiki/Sobolev_mapping

    In mathematics, a Sobolev mapping is a mapping between manifolds which has smoothness in some sense. Sobolev mappings appear naturally in manifold-constrained problems in the calculus of variations and partial differential equations , including the theory of harmonic maps .

  4. Gagliardo–Nirenberg interpolation inequality - Wikipedia

    en.wikipedia.org/wiki/Gagliardo–Nirenberg...

    In mathematics, and in particular in mathematical analysis, the Gagliardo–Nirenberg interpolation inequality is a result in the theory of Sobolev spaces that relates the -norms of different weak derivatives of a function through an interpolation inequality.

  5. Poincaré inequality - Wikipedia

    en.wikipedia.org/wiki/Poincaré_inequality

    For example, the approach based on "upper gradients" leads to Newtonian-Sobolev space of functions. Thus, it makes sense to say that a space "supports a Poincare inequality". It turns out that whether a space supports any Poincare inequality and if so, the critical exponent for which it does, is tied closely to the geometry of the space.

  6. Sobolev space - Wikipedia

    en.wikipedia.org/wiki/Sobolev_space

    Intuitively, a Sobolev space is a space of functions possessing sufficiently many derivatives for some application domain, such as partial differential equations, and equipped with a norm that measures both the size and regularity of a function. Sobolev spaces are named after the Russian mathematician Sergei Sobolev.

  7. Trace operator - Wikipedia

    en.wikipedia.org/wiki/Trace_operator

    The trace operator can be defined for functions in the Sobolev spaces , with <, see the section below for possible extensions of the trace to other spaces. Let Ω ⊂ R n {\textstyle \Omega \subset \mathbb {R} ^{n}} for n ∈ N {\textstyle n\in \mathbb {N} } be a bounded domain with Lipschitz boundary.

  8. Trudinger's theorem - Wikipedia

    en.wikipedia.org/wiki/Trudinger's_theorem

    In mathematical analysis, Trudinger's theorem or the Trudinger inequality (also sometimes called the Moser–Trudinger inequality) is a result of functional analysis on Sobolev spaces. It is named after Neil Trudinger (and Jürgen Moser). It provides an inequality between a certain Sobolev space norm and an Orlicz space norm of a

  9. Differentiable manifold - Wikipedia

    en.wikipedia.org/wiki/Differentiable_manifold

    Let M be a topological space.A chart (U, φ) on M consists of an open subset U of M, and a homeomorphism φ from U to an open subset of some Euclidean space R n.Somewhat informally, one may refer to a chart φ : U → R n, meaning that the image of φ is an open subset of R n, and that φ is a homeomorphism onto its image; in the usage of some authors, this may instead mean that φ : U → R n ...

  1. Related searches sobolev inequality on manifolds and marine pollution levels chart example

    sobolev inequality wikipediasobolev inequality formula